Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States.
J Chem Inf Model. 2021 Jan 25;61(1):481-492. doi: 10.1021/acs.jcim.0c01019. Epub 2021 Jan 6.
The α2a adrenoceptor is a medically relevant subtype of the G protein-coupled receptor family. Unfortunately, high-throughput techniques aimed at producing novel drug leads for this receptor have been largely unsuccessful because of the complex pharmacology of adrenergic receptors. As such, cutting-edge ligand- and structure-based assessment and deep learning methods are well positioned to provide new insights into protein-ligand interactions and potential active compounds. In this work, we (i) collect a dataset of α2a adrenoceptor agonists and provide it as a resource for the drug design community; (ii) use the dataset as a basis to generate candidate-active structures deep learning; and (iii) apply computational ligand- and structure-based analysis techniques to gain new insights into α2a adrenoceptor agonists and assess the quality of the computer-generated compounds. We further describe how such assessment techniques can be applied to putative chemical probes with a case study involving proposed medetomidine-based probes.
α2a 肾上腺素受体是 G 蛋白偶联受体家族中具有医学相关性的亚型。不幸的是,由于肾上腺素受体的复杂药理学,旨在为此受体生产新型药物先导物的高通量技术在很大程度上都没有成功。因此,最先进的配体和基于结构的评估和深度学习方法非常适合提供对蛋白质-配体相互作用和潜在活性化合物的新见解。在这项工作中,我们 (i) 收集了一组 α2a 肾上腺素受体激动剂数据集,并将其作为药物设计社区的资源;(ii) 使用该数据集作为基础,通过深度学习生成候选活性结构;以及 (iii) 应用计算配体和基于结构的分析技术,深入了解 α2a 肾上腺素受体激动剂,并评估计算机生成化合物的质量。我们进一步描述了如何将这种评估技术应用于假定的化学探针,通过一个涉及拟议的基于美托咪定的探针的案例研究来说明。