Laboratório de Materiais Poliméricos e Biossorventes, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil.
Departamento de Química, Universidade Federal de São Paulo, Diadema, SP, 09913-030, Brazil.
Environ Sci Pollut Res Int. 2021 May;28(19):24816-24829. doi: 10.1007/s11356-020-11726-8. Epub 2021 Jan 6.
Biosorption has become a viable and ecological process in which biological materials are employed as adsorbents for the removal of potentially toxic metals, such as hexavalent chromium, from aqueous matrices. This work proposed the use of in natura (SB) and nanomodified sugarcane bagasse (SB-NP) with ferromagnetic nanoparticles (FeO) to adsorb Cr(VI) from water. These materials were analyzed by X-ray Spectroscopy (XRD), Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) to investigate their morphology and interaction with Cr(VI). It was observed the efficient impregnation of magnetite on the SB surface and the presence of functional groups such as O-H, C-H, C=O, C-O-C, C-O, and Fe-O (characteristic of magnetite). The best conditions for Cr(VI) removal in aqueous medium were determined by assessing the pH at the point of zero charge (pH = 6.1 and 5.8 for SB and SB-NP, respectively), adsorption pH and kinetics, and adsorption capacity. Batch procedures were performed using increasing concentrations of Cr(VI), 10-100 mg/L at pH 1.0, and 30 min of contact time. The adsorbent dose was 10 mg/L, and the experimental adsorption capacities (SC) for SB, NP, and SB-NP were 1.49 ± 0.06 mg/g, 2.48 ± 0.57 mg/g, and 1.60 ± 0.08 mg/g, respectively. All Cr contents were determined by flame atomic absorption spectrometry (FAAS). The pseudo-2nd-order kinetic equation provided the best adjustments with r 0.9966 and 0.9931 for SB and SB-NP, respectively. Six isotherm models (Langmuir, Freundlich, Sips, Temkin, Dubinin-Radushkevich, and Hill) were applied to the experimental data, and Freundlich, Dubinin-Radushkevich (D-R), and Temkin were the models that best described the experimental sorption process. The binding energy values (E) provided by the D-R model were 0.11 ± 0.25, 0.09 ± 0.20, and 0.08 ± 0.25 kJ/mol, for NP, SB-NP, and SB, respectively, and denote a physical interaction for the studied adsorbate-adsorbent system. The nanomodification of the biomass slightly improved the efficiency for the sorption of Cr(VI) and facilitated the removal of Cr(VI)-containing biosorbents from water medium.
生物吸附已成为一种可行且生态的过程,其中生物材料被用作吸附剂,用于从水基质中去除潜在有毒金属,如六价铬。本工作提出使用天然(SB)和纳米修饰的甘蔗渣(SB-NP)与铁磁纳米粒子(FeO)来吸附水中的 Cr(VI)。这些材料通过 X 射线光谱(XRD)、扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)进行分析,以研究其形态和与 Cr(VI)的相互作用。观察到磁铁矿在 SB 表面的有效浸渍和存在 O-H、C-H、C=O、C-O-C、C-O 和 Fe-O 等官能团(磁铁矿的特征)。通过评估零电荷点处的 pH 值(分别为 SB 和 SB-NP 的 pH = 6.1 和 5.8)、吸附 pH 值和动力学以及吸附容量,确定了在水介质中去除 Cr(VI)的最佳条件。使用 10-100 mg/L 的 Cr(VI)浓度、pH 值为 1.0 和 30 分钟的接触时间进行分批程序。吸附剂剂量为 10 mg/L,SB、NP 和 SB-NP 的实验吸附容量(SC)分别为 1.49 ± 0.06 mg/g、2.48 ± 0.57 mg/g 和 1.60 ± 0.08 mg/g。所有的 Cr 含量均通过火焰原子吸收光谱法(FAAS)确定。准二级动力学方程提供了最佳的调整,r 分别为 0.9966 和 0.9931,用于 SB 和 SB-NP。应用了六种等温模型(朗缪尔、弗伦德利希、Sips、坦金、杜比宁-拉德肖克维奇和希勒)对实验数据进行拟合,弗伦德利希、杜比宁-拉德肖克维奇(D-R)和坦金是描述实验吸附过程的最佳模型。由 D-R 模型提供的结合能值(E)分别为 0.11 ± 0.25、0.09 ± 0.20 和 0.08 ± 0.25 kJ/mol,用于 NP、SB-NP 和 SB,这表示研究的吸附剂-吸附剂系统发生物理相互作用。生物质的纳米修饰略微提高了对 Cr(VI)的吸附效率,并有助于从水介质中去除含 Cr(VI)的生物吸附剂。