(Bio)Process Engineering Group, IIM-CSIC (Spanish National Research Council), Vigo, Spain.
School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, UK.
Methods Mol Biol. 2021;2229:221-239. doi: 10.1007/978-1-0716-1032-9_11.
Dynamic modeling in systems and synthetic biology is still quite a challenge-the complex nature of the interactions results in nonlinear models, which include unknown parameters (or functions). Ideally, time-series data support the estimation of model unknowns through data fitting. Goodness-of-fit measures would lead to the best model among a set of candidates. However, even when state-of-the-art measuring techniques allow for an unprecedented amount of data, not all data suit dynamic modeling.Model-based optimal experimental design (OED) is intended to improve model predictive capabilities. OED can be used to define the set of experiments that would (a) identify the best model or (b) improve the identifiability of unknown parameters. In this chapter, we present a detailed practical procedure to compute optimal experiments using the AMIGO2 toolbox.
系统和合成生物学中的动态建模仍然是一个相当大的挑战——相互作用的复杂性质导致了非线性模型,其中包括未知参数(或函数)。理想情况下,时间序列数据通过数据拟合支持模型未知参数的估计。拟合优度度量将导致在一组候选者中选择最佳模型。然而,即使最先进的测量技术允许获得前所未有的大量数据,也并非所有数据都适合动态建模。基于模型的最优实验设计(OED)旨在提高模型预测能力。OED 可用于定义一组实验,这些实验将 (a) 确定最佳模型,或 (b) 提高未知参数的可识别性。在本章中,我们使用 AMIGO2 工具箱展示了一种计算最优实验的详细实用程序。