Suppr超能文献

AMIGO,一个使用全局优化进行系统生物学中高级模型识别的工具箱。

AMIGO, a toolbox for advanced model identification in systems biology using global optimization.

机构信息

Bioprocess Engineering Group, IIM-CSIC, 36208 Vigo, Spain.

出版信息

Bioinformatics. 2011 Aug 15;27(16):2311-3. doi: 10.1093/bioinformatics/btr370. Epub 2011 Jun 17.

Abstract

MOTIVATION

Mathematical models of complex biological systems usually consist of sets of differential equations which depend on several parameters which are not accessible to experimentation. These parameters must be estimated by fitting the model to experimental data. This estimation problem is very challenging due to the non-linear character of the dynamics, the large number of parameters and the frequently poor information content of the experimental data (poor practical identifiability). The design of optimal (more informative) experiments is an associated problem of the highest interest.

RESULTS

This work presents AMIGO, a toolbox which facilitates parametric identification by means of advanced numerical techniques which cover the full iterative identification procedure putting especial emphasis on robust methods for parameter estimation and practical identifiability analyses, plus flexible capabilities for optimal experimental design.

AVAILABILITY

The toolbox and the corresponding documentation may be downloaded from: http://www.iim.csic.es/~amigo

CONTACT

ebalsa@iim.csic.es.

摘要

动机

复杂生物系统的数学模型通常由一组微分方程组成,这些方程依赖于几个无法通过实验获得的参数。这些参数必须通过将模型拟合到实验数据来估计。由于动力学的非线性特征、参数数量大以及实验数据的信息含量通常较差(实际可识别性差),因此这个估计问题极具挑战性。设计最佳(更具信息量)的实验是一个非常关注的相关问题。

结果

这项工作介绍了 AMIGO,这是一个工具箱,通过先进的数值技术来促进参数识别,这些技术涵盖了完整的迭代识别过程,特别强调了用于参数估计和实际可识别性分析的稳健方法,以及用于最佳实验设计的灵活功能。

可用性

可以从以下网址下载工具箱和相应的文档:http://www.iim.csic.es/~amigo

联系人

ebalsa@iim.csic.es

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c5/3150037/d8380c695a99/btr370f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验