Awasthi Neha, Kopec Wojciech, Wilkosz Natalia, Jamróz Dorota, Hub Jochen S, Zatorska Maria, Petka Rafał, Nowakowska Maria, Kepczynski Mariusz
Institute for Microbiology and Genetics, Georg-August-Universität, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany.
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
ACS Biomater Sci Eng. 2019 Feb 11;5(2):780-794. doi: 10.1021/acsbiomaterials.8b01495. Epub 2018 Dec 18.
Polycations are an attractive class of macromolecules with promising applications as drug/gene carriers and biocides. The chemical structure and concentration of a polycation determine its interaction with cellular membranes and, hence, are crucial parameters for designing efficient nontoxic polycations. However, the interaction of polycations with biomembranes at the molecular level and the corresponding free-energy landscape is not well understood. In this work, we investigate the molecular mechanism of interaction between a strong polycation substituted with alkyl moieties and zwitterionic membranes via long-time-scale all-atom molecular dynamics simulations and free-energy calculations combined with Langmuir monolayer, atomic force microscopy, and calcein-release experimental measurements. We found that the membrane activity of the polycation and its ability to induce pores in the membranes can be attributed to the polycation-induced changes in the bilayer organization, such as reduced membrane thickness, increased disorder of the acyl chains, reduced packing, and electrostatic field gradients between membrane leaflets. These changes facilitate the penetration of water into the membrane and the formation of aqueous defects/pores. The calculated free-energy profiles indicate that the polycation lowers the nucleation barrier for pore opening and the free energy for pore formation in a concentration-dependent manner. Above the critical coverage of the membrane, the polycation nucleates spontaneous pores in zwitterionic membranes. Our work demonstrates the potential of combining enhanced sampling methods in MD simulations with experiments for a quantitative description of various events in the polycation-membrane interaction cycle, such as strong adsorption on the membrane due to hydrophobic and electrostatic interactions, and pore formation.
聚阳离子是一类极具吸引力的大分子,在作为药物/基因载体和杀菌剂方面有着广阔的应用前景。聚阳离子的化学结构和浓度决定了其与细胞膜的相互作用,因此是设计高效无毒聚阳离子的关键参数。然而,聚阳离子与生物膜在分子水平上的相互作用以及相应的自由能态势还没有得到很好的理解。在这项工作中,我们通过长时间尺度的全原子分子动力学模拟和自由能计算,并结合朗缪尔单分子层、原子力显微镜和钙黄绿素释放实验测量,研究了一种被烷基取代的强聚阳离子与两性离子膜之间相互作用的分子机制。我们发现,聚阳离子的膜活性及其在膜中诱导孔隙的能力可归因于聚阳离子引起的双层结构变化,如膜厚度减小、酰基链无序度增加、堆积减少以及膜小叶之间的静电场梯度降低。这些变化促进了水进入膜并形成水相缺陷/孔隙。计算得到的自由能分布表明,聚阳离子以浓度依赖的方式降低了孔隙开放的成核势垒和孔隙形成的自由能。在膜的临界覆盖率以上,聚阳离子在两性离子膜中形成自发孔隙。我们的工作证明了将分子动力学模拟中的增强采样方法与实验相结合,对聚阳离子-膜相互作用循环中的各种事件进行定量描述的潜力,如由于疏水和静电相互作用在膜上的强烈吸附以及孔隙形成。