Saarland University, Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
Nat Commun. 2021 Nov 15;12(1):6594. doi: 10.1038/s41467-021-26924-2.
Many biological membranes are asymmetric and exhibit complex lipid composition, comprising hundreds of distinct chemical species. Identifying the biological function and advantage of this complexity is a central goal of membrane biology. Here, we study how membrane complexity controls the energetics of the first steps of membrane fusions, that is, the formation of a stalk. We first present a computationally efficient method for simulating thermodynamically reversible pathways of stalk formation at coarse-grained resolution. The method reveals that the inner leaflet of a typical plasma membrane is far more fusogenic than the outer leaflet, which is likely an adaptation to evolutionary pressure. To rationalize these findings by the distinct lipid compositions, we computed ~200 free energies of stalk formation in membranes with different lipid head groups, tail lengths, tail unsaturations, and sterol content. In summary, the simulations reveal a drastic influence of the lipid composition on stalk formation and a comprehensive fusogenicity map of many biologically relevant lipid classes.
许多生物膜是不对称的,表现出复杂的脂质组成,包含数百种不同的化学物质。确定这种复杂性的生物学功能和优势是膜生物学的一个核心目标。在这里,我们研究了膜复杂性如何控制膜融合的第一步(即形成柄部)的能量学。我们首先提出了一种在粗粒度分辨率下模拟热力学可逆途径的计算效率高的方法。该方法表明,典型的质膜内层比外层具有更高的融合性,这可能是对进化压力的一种适应。为了通过不同的脂质组成来合理化这些发现,我们计算了不同脂质头部基团、尾部长度、尾部不饱和度和固醇含量的膜中约 200 个柄部形成的自由能。总之,模拟揭示了脂质组成对柄部形成的强烈影响,以及许多生物学相关脂质类别的综合融合性图谱。