Department of Statistics, Brigham Young University, Provo, Utah 84604, United States.
Department of Mechanical Engineering, Brigham Young University, Provo, Utah 84604, United States.
Anal Chem. 2021 Feb 2;93(4):2291-2298. doi: 10.1021/acs.analchem.0c04160. Epub 2021 Jan 6.
This article presents a method of simulating molecular transport in capillary gas chromatography (GC) applicable to isothermal, temperature-programmed, and thermal gradient conditions. The approach accounts for parameter differences that can occur across an analyte band including pressure, mobile phase velocity, temperature, and retention factor. The model was validated experimentally using a GC column comprised of microchannels in a stainless-steel plate capable of isothermal, temperature-programmed, and thermal gradient GC separations. The parameters governing retention and dispersion in the transport model were fitted with 12 experimental isothermal separations. The transport model was validated with experimental data for three analytes using four temperature-programmed and three thermal gradient GC separations. The simulated peaks (elution time and dispersion) give reasonable predictions of observed separations. The magnitudes of the maximum error between simulated peak elution time and experiment were 2.6 and 4.2% for temperature-programmed and thermal gradient GC, respectively. The magnitudes of the maximum error between the simulated peak width and experiment were 15.4 and 5.8% for temperature-programmed and thermal gradient GC, respectively. These relatively low errors give confidence that the model reflects the behavior of the transport processes and provides meaningful predictions for GC separations. This transport model allows for an evaluation of analyte separation characteristics of the analyte band at any position along the length of the GC column in addition to peak characteristics at the column exit. The transport model enables investigation of column conditions that influence separation behavior and opens exploration of optimal column design and heating conditions.
本文提出了一种适用于等温、程序升温及热梯度条件下毛细管气相色谱(GC)中分子传输的模拟方法。该方法考虑了包括压力、流动相速度、温度和保留因子在内的整个分析物带的参数差异。该模型使用由不锈钢板中微通道组成的 GC 柱进行了实验验证,该柱可实现等温、程序升温及热梯度 GC 分离。传输模型中的保留和分散参数通过 12 个等温分离的实验进行拟合。使用四个程序升温及三个热梯度 GC 分离对三个分析物的实验数据进行了模型验证。模拟峰(洗脱时间和分散)对观察到的分离结果进行了合理的预测。模拟峰洗脱时间与实验之间的最大误差分别为程序升温及热梯度 GC 的 2.6%和 4.2%。模拟峰宽与实验之间的最大误差分别为程序升温及热梯度 GC 的 15.4%和 5.8%。这些相对较低的误差表明该模型反映了传输过程的行为,并为 GC 分离提供了有意义的预测。该传输模型允许在 GC 柱长度的任何位置评估分析物带的分析物分离特性,以及柱出口处的峰特性。该传输模型能够研究影响分离行为的柱条件,并为最优柱设计和加热条件的探索提供了可能性。