Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa.
School of Public Health, University of Illinois at Chicago, Chicago, Illinois.
J Occup Environ Hyg. 2021 Feb;18(2):65-71. doi: 10.1080/15459624.2020.1864152. Epub 2021 Jan 6.
A quantitative fit test is performed using a benchtop instrument (e.g., TSI PortaCount) to assess the fit factor provided by a respirator when assigned to a worker. There are no wearable instruments on the market to measure protection factors while the respirator is in use. The aim of this study is to evaluate two new, wearable, quantitative instruments-a dual-channel optical particle counter (DC OPC) and a dual-channel condensation particle counter (DC CPC)-that would enable , real-time measurement of respirator workplace protection factor. Respirator laboratory protection factors measured by the new instruments were compared to those measured with the TSI PortaCount on one test subject for three test aerosols (sodium chloride, incense, ambient) at target laboratory protection factors of 100, 300, and 1,000 for sodium chloride and ambient, and 75 and 500 for incense. Three replicates were performed for each test condition. Data were analyzed with a two-sided paired t-test at a significance level of 0.05. Laboratory protection factors measured with the DC CPC agree with those measured with the PortaCount whereas those from the DC OPC generally do not. Mean laboratory protection factors derived from the DC CPC are only statistically significantly different for mean values of a laboratory protection factor at ambient conditions for a target laboratory protection factor of 300 ( = 0.02) and for incense at a target laboratory protection factor of 75 ( = 0.03). Although statistically significant, the difference in laboratory protection factors derived from the DC CPC are not substantial in practice and may be explained by systematic uncertainty. In contrast, the DC OPC reports substantially larger mean laboratory protection factors, differing by about half an order of magnitude in extreme cases, and statistically significantly different mean laboratory protection factors for the sodium chloride aerosol for target laboratory protection factors of 100 and 300 ( = 0.01 and = 0.01).
使用台式仪器(例如 TSI PortaCount)进行定量贴合测试,以评估为工人分配呼吸器时提供的贴合因子。目前市场上没有可穿戴仪器来测量呼吸器使用时的保护因子。本研究旨在评估两种新的可穿戴定量仪器 - 双通道光学粒子计数器(DC OPC)和双通道冷凝粒子计数器(DC CPC)- 这将能够实时测量呼吸器的工作场所保护因子。用新仪器测量的呼吸器实验室保护因子与在一个测试对象上用 TSI PortaCount 测量的实验室保护因子进行了比较,对于三种测试气溶胶(氯化钠、香薰、环境),目标实验室保护因子分别为 100、300 和 1000 (氯化钠和环境),75 和 500 (香薰)。每种测试条件均进行了三次重复。在 0.05 的显著水平下,使用双侧配对 t 检验对数据进行了分析。用 DC CPC 测量的实验室保护因子与用 PortaCount 测量的实验室保护因子一致,而用 DC OPC 测量的实验室保护因子则不一致。仅在目标实验室保护因子为 300 时,环境条件下的实验室保护因子平均值(= 0.02)和目标实验室保护因子为 75 时的香薰平均值(= 0.03)来自 DC CPC 的实验室保护因子平均值才有统计学意义上的差异。虽然在统计学上有显著差异,但来自 DC CPC 的实验室保护因子差异在实践中并不显著,并且可能是由系统不确定性引起的。相比之下,DC OPC 报告的实验室保护因子平均值明显更大,在极端情况下相差约一个数量级,并且在目标实验室保护因子为 100 和 300 时,氯化钠气溶胶的实验室保护因子平均值具有统计学意义上的显著差异(= 0.01 和 = 0.01)。