Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.
Cell Rep. 2021 Jan 5;34(1):108579. doi: 10.1016/j.celrep.2020.108579.
O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is a unique enzyme introducing O-GlcNAc moiety on target proteins, and it critically regulates various cellular processes in diverse cell types. However, its roles in hematopoietic stem and progenitor cells (HSPCs) remain elusive. Here, using Ogt conditional knockout mice, we show that OGT is essential for HSPCs. Ogt is highly expressed in HSPCs, and its disruption induces rapid loss of HSPCs with increased reactive oxygen species and apoptosis. In particular, Ogt-deficient hematopoietic stem cells (HSCs) lose quiescence, cannot be maintained in vivo, and become vulnerable to regenerative and competitive stress. Interestingly, Ogt-deficient HSCs accumulate defective mitochondria due to impaired mitophagy with decreased key mitophagy regulator, Pink1, through dysregulation of H3K4me3. Furthermore, overexpression of PINK1 restores mitophagy and the number of Ogt-deficient HSCs. Collectively, our results reveal that OGT critically regulates maintenance and stress response of HSCs by ensuring mitochondrial quality through PINK1-dependent mitophagy.
O-连接的 N-乙酰葡萄糖胺(O-GlcNAc)转移酶(OGT)是一种在靶蛋白上引入 O-GlcNAc 部分的独特酶,它在各种细胞类型中对各种细胞过程具有关键的调节作用。然而,它在造血干细胞和祖细胞(HSPCs)中的作用仍不清楚。在这里,我们使用 Ogt 条件性敲除小鼠表明,OGT 对 HSPCs 是必不可少的。Ogt 在 HSPCs 中高度表达,其缺失会导致 HSPCs 的快速丢失,同时伴有活性氧和细胞凋亡的增加。特别是,Ogt 缺陷的造血干细胞(HSCs)失去静止状态,不能在体内维持,并且容易受到再生和竞争压力的影响。有趣的是,由于 Pink1 减少,即通过 H3K4me3 的失调导致线粒体自噬受损,Ogt 缺陷的 HSCs 积累了有缺陷的线粒体。此外,过表达 Pink1 可恢复线粒体自噬和 Ogt 缺陷的 HSCs 的数量。总之,我们的结果表明,OGT 通过 Pink1 依赖性线粒体自噬确保线粒体质量,从而对 HSCs 的维持和应激反应进行关键调节。