Liao Yun, Octaviani Stacia, Tian Zhen, Wang Samuel R, Huang Chunlan, Huang Jian
Coriell Institute for Medical Research, Camden, NJ, USA.
Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, Sichuan, China.
Stem Cell Res Ther. 2025 Apr 15;16(1):180. doi: 10.1186/s13287-025-04304-7.
Mitochondrial quality control (MQC) is a critical mechanism for maintaining mitochondrial function and cellular metabolic homeostasis, playing an essential role in the self-renewal, differentiation, and long-term stability of hematopoietic stem cells (HSCs). Recent research highlights the central importance of MQC in HSC biology, particularly the roles of mitophagy, mitochondrial biogenesis, fission, fusion and mitochondrial transfer in regulating HSC function. Mitophagy ensures the removal of damaged mitochondria, maintaining low levels of reactive oxygen species (ROS) in HSCs, thereby preventing premature aging and functional decline. Concurrently, mitochondrial biogenesis adjusts key metabolic regulators such as mitochondrial transcription factor A (TFAM) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) to meet environmental demands, ensuring the metabolic needs of HSCs are met. Additionally, mitochondrial transfer, as an essential form of intercellular material exchange, facilitates the transfer of functional mitochondria from bone marrow stromal cells to HSCs, contributing to damage repair and metabolic support. Although existing studies have revealed the significance of MQC in maintaining HSC function, the precise molecular mechanisms and interactions among different regulatory pathways remain to be fully elucidated. Furthermore, the potential role of MQC dysfunction in hematopoietic disorders, including its involvement in disease progression and therapeutic resistance, is not yet fully understood. This review discusses the molecular mechanisms of MQC in HSCs, its functions under physiological and pathological conditions, and its potential therapeutic applications. By summarizing the current progress in this field, we aim to provide insights for further research and the development of innovative treatment strategies.
线粒体质量控制(MQC)是维持线粒体功能和细胞代谢稳态的关键机制,在造血干细胞(HSC)的自我更新、分化和长期稳定性中发挥着重要作用。最近的研究突出了MQC在HSC生物学中的核心重要性,特别是线粒体自噬、线粒体生物发生、裂变、融合和线粒体转移在调节HSC功能中的作用。线粒体自噬确保清除受损线粒体,维持HSC中低水平的活性氧(ROS),从而防止过早衰老和功能衰退。同时,线粒体生物发生会调整关键的代谢调节因子,如线粒体转录因子A(TFAM)和过氧化物酶体增殖物激活受体γ共激活因子1α(PGC-1α),以满足环境需求,确保满足HSC的代谢需求。此外,线粒体转移作为细胞间物质交换的一种重要形式,促进了功能性线粒体从骨髓基质细胞向HSC的转移,有助于损伤修复和代谢支持。尽管现有研究已经揭示了MQC在维持HSC功能中的重要性,但不同调节途径之间的确切分子机制和相互作用仍有待充分阐明。此外,MQC功能障碍在造血系统疾病中的潜在作用,包括其在疾病进展和治疗耐药性中的参与,尚未完全了解。本综述讨论了MQC在HSC中的分子机制、其在生理和病理条件下的功能以及其潜在的治疗应用。通过总结该领域的当前进展,我们旨在为进一步研究和开发创新治疗策略提供见解。