Suppr超能文献

分子间自由基反应促进的高度氧化天然产物的汇聚组装。

Convergent Assembly of Highly Oxygenated Natural Products Enabled by Intermolecular Radical Reactions.

机构信息

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

出版信息

Acc Chem Res. 2021 Feb 2;54(3):595-604. doi: 10.1021/acs.accounts.0c00792. Epub 2021 Jan 6.

Abstract

Natural products with a high ratio of sp-hybridized atoms and oxygen-substituted stereogenic centers represent privileged structures for the development of pharmaceuticals and chemical probes. The multiple oxygen functionalities of these natural products endow their potent and selective biological activities, although they significantly heighten the challenge of their chemical assemblies. We focused on developing efficient strategies for the total syntheses of this biologically and chemically important class of molecules. A convergent strategy is more advantageous than a linear strategy for designing a shorter synthetic route because a convergent strategy enables direct coupling of functionalized fragments whereas a linear strategy involves stepwise construction of a molecule from its terminus. Radical reactions are preferred over polar reactions for the coupling of heavily functionalized and sp-rich fragments, as they allow for C(sp)-C(sp) coupling without damaging diverse polar functional groups. With these considerations in mind, we designed radical-based convergent strategies for assembling highly oxygenated natural products. Here we summarize the concise total syntheses of asimicin (, antibiotic activity), 1-hydroxytaxinine (, cytotoxicity), polyoxins (, antifungal activity), and hikizimycin (, anthelmintic activity) as representative examples. Retrosynthetic disconnection at the central part of these molecules produces highly substituted α-alkoxy radicals as synthons. In the synthetic direction, the α-alkoxy radicals were generated from the corresponding α-alkoxyacyl tellurides in a unified fashion, and then utilized for four distinct coupling reactions. Formation of the Et radical from EtB and O homolytically cleaves the C-Te bond of α-alkoxyacyl telluride, and the facile expulsion of carbon monoxide from the acyl radical leads to the α-alkoxy radical. Dimerization of the stabilized α-alkoxy radical resulted in the core structure of with 10 contiguous stereocenters. The coupling adduct was derivatized to through the attachment of two different carbon chains (17 steps as the longest linear sequence). Alternatively, intermolecular addition reactions of the α-alkoxy radicals to electron-deficient C═C, C═N, and C═O bonds, followed by EtB-mediated radical termination, led to the core structures of , , and , respectively. Intermolecular coupling between the α-alkoxy radical and the cyclohexenone derivative and intramolecular pinacol coupling gave rise to the 6/8/6-fused ring system of , which was transformed to (26 steps). The two amino acid moieties of were prepared by combining the α-alkoxy radical and the oxime and were then condensed to complete the synthesis of (11 steps). Furthermore, a combination of α-alkoxyacyl telluride and EtB/O realized a novel addition reaction of α-alkoxy radicals to aldehydes. This method was incorporated in the construction of the core 4-amino-5-deoxyundecose with 10 contiguous stereocenters, which was fabricated with two appendage structures to deliver . The four total syntheses described here demonstrate the versatility and robustness of intermolecular radical reactions. These syntheses will also provide new insights for retrosynthetic analyses in the field of organic chemistry and streamline synthetic routes to various bioactive natural products with multiple oxygen functionalities.

摘要

天然产物中具有高比例的 sp 杂化原子和含氧取代的手性中心,代表了开发药物和化学探针的优势结构。这些天然产物的多种含氧官能团赋予其强大而选择性的生物活性,尽管它们极大地增加了其化学组装的挑战。我们专注于开发这些具有重要生物学和化学意义的分子的高效全合成策略。与线性策略相比,收敛策略更有利于设计更短的合成路线,因为收敛策略能够直接偶联功能化片段,而线性策略则需要从分子末端逐步构建分子。对于富含 sp 杂化和官能团的片段的偶联,自由基反应优于极性反应,因为它们允许 C(sp)-C(sp) 偶联,而不会破坏各种极性官能团。考虑到这些因素,我们设计了基于自由基的收敛策略来组装高度含氧的天然产物。在这里,我们总结了代表性的抗生素活性 asimicin()、细胞毒性 1-羟基紫杉宁()、抗真菌活性 polyoxins()和驱虫活性 hikizimycin()的简洁全合成。这些分子中心部分的逆合成切断产生了高度取代的α-烷氧基自由基作为合成子。在合成方向上,α-烷氧基自由基以统一的方式从相应的α-烷氧基酰基碲化物中生成,然后用于四种不同的偶联反应。EtB 和 O 均裂裂解α-烷氧基酰基碲化物的 C-Te 键,生成 Et 自由基,从酰基自由基中容易逐出一氧化碳,生成α-烷氧基自由基。稳定的α-烷氧基自由基的二聚化导致具有 10 个连续手性中心的核心结构。通过连接两个不同的碳链(最长线性序列 17 步),将偶联加合物衍生为。或者,α-烷氧基自由基与缺电子的 C═C、C═N 和 C═O 键的分子间加成反应,然后通过 EtB 介导的自由基终止,分别导致核心结构、和的形成。α-烷氧基自由基与环己烯酮衍生物的分子间偶联和分子内频哪醇偶联导致具有 6/8/6 稠合环系统的的形成,将其转化为(26 步)。的两个氨基酸部分通过结合α-烷氧基自由基和肟制备,并缩合完成的合成(11 步)。此外,α-烷氧基酰基碲化物和 EtB/O 的组合实现了α-烷氧基自由基向醛的新颖加成反应。该方法被纳入具有 10 个连续手性中心的核心 4-氨基-5-去氧十一烷的构建中,通过两个附加结构构建该核心,得到。这里描述的四个全合成展示了分子间自由基反应的多功能性和稳健性。这些合成还将为有机化学领域的逆合成分析提供新的见解,并简化具有多个含氧官能团的各种生物活性天然产物的合成路线。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验