Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering and Department of Chemical Biology, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China.
Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
Acc Chem Res. 2020 Nov 17;53(11):2569-2586. doi: 10.1021/acs.accounts.0c00531. Epub 2020 Nov 2.
Polycyclic natural products are an inexhaustible source of medicinal agents, and their complex molecular architecture renders challenging synthetic targets where innovative and effective approaches for their rapid construction are urgently required. The total synthesis of polycyclic natural products has witnessed exponential progression along with the emergence of new synthetic strategies and concepts, such as sequential C-H functionalizations, radical-based transformations, and functional group pairing strategies. Our group exerts continued interest in the construction of bioactive and structurally complex natural products as well as evaluation of the mode of action of these molecules. In this Account, we will showcase how these new synthetic strategies are employed and guide our total synthesis endeavors.During the last two decades, a series of remarkable advances in C-H functionalization have led to the emergence of many new approaches to directly functionalize C-H bonds into useful functional groups. These selective transformations have provided a great opportunity for the step- and atom-economical construction of key fragments in complex molecule synthesis. We recently furnished the total syntheses for polycyclic natural products: incarviatone A, chrysomycin A, polycarcin V, and gilvocarcin V by employing a multiple C-H bond functionalization strategy. The polysubstituted benzene or naphthalene skeleton was constructed through sequential and site-selective C-H functionalizations from readily available simple starting materials, which reduced the number of steps and streamlined synthesis.Recently, we have also completed the total syntheses for a number of skeletally diverse tetracyclic diterpenoids inspired by their biogenesis and radical-based retrosynthetic disconnections. Radical transformations are strategically and tactically utilized in our syntheses, and radical-based reactions, including organo-SOMO catalysis, Birch reduction, regioselective 1,6-dienyne reductive cyclization, visible-light-mediated Schenck ene reaction, and photoradical-mediated late-stage skeletal rearrangement, play significant roles in our synthetic endeavors. Protecting-group-free and scalable syntheses are also built into our work to achieve the "ideal" synthesis. Furthermore, our synthetic work reveals that late-stage skeletal rearrangement through a photo radical process is possible in a biological setting in complement with nature's carbocation chemistry in complex natural product biosynthesis. alkaloids are a large family of structurally unique polycyclic natural products with impressive biological activities. Owing to their fascinating polycyclic architectures and diverse biological activities, these alkaloids have continued to serve as targets as well as inspirations for the synthetic community for decades. To access these bioactive natural products or natural product-like molecules for biological exploration and drug discovery, we applied a novel functional group pairing strategy to furnish the total syntheses for several alkaloids and obtained numerous skeletally diverse compounds with structural complexity comparable to natural products.
多环天然产物是药物的不竭来源,其复杂的分子结构使其成为具有挑战性的合成目标,因此需要创新且有效的方法来快速构建这些目标。随着新的合成策略和概念(例如顺序 C-H 功能化、基于自由基的转化和官能团配对策略)的出现,多环天然产物的全合成取得了指数级的进展。我们小组一直对构建具有生物活性和结构复杂的天然产物以及评估这些分子的作用模式感兴趣。在本报告中,我们将展示如何使用这些新的合成策略来指导我们的全合成工作。
在过去的二十年中,C-H 功能化方面的一系列显著进展导致了许多直接将 C-H 键官能化形成有用官能团的新方法的出现。这些选择性转化为复杂分子合成中关键片段的步骤和原子经济性构建提供了极好的机会。我们最近通过采用多步 C-H 键功能化策略,为多环天然产物 incarviatone A、chrysomycin A、polycarcin V 和 gilvocarcin V 的全合成提供了支持。通过从易得的简单起始原料中进行顺序和选择性 C-H 功能化,构建了多取代苯或萘骨架,从而减少了步骤数并简化了合成。
最近,我们还完成了一系列骨架多样的四环二萜类化合物的全合成,这些化合物的灵感来自于它们的生物发生和基于自由基的逆合成切断。在我们的合成中,自由基转化策略和策略得到了利用,并且基于自由基的反应,包括有机 SOMO 催化、Birch 还原、区域选择性 1,6-二炔还原环化、可见光介导的 Schenck 烯反应和光自由基介导的后期骨架重排,在我们的合成工作中发挥了重要作用。无保护基和可扩展的合成也被构建到我们的工作中,以实现“理想”的合成。此外,我们的合成工作表明,在生物环境中通过光自由基过程进行后期骨架重排是可能的,这与复杂天然产物生物合成中天然存在的碳正离子化学相辅相成。
生物碱是一类具有令人印象深刻的生物活性的结构独特的多环天然产物。由于其迷人的多环结构和多样的生物活性,这些生物碱几十年来一直是合成界的目标,也是灵感来源。为了获得这些生物活性天然产物或类似天然产物的分子进行生物探索和药物发现,我们应用了一种新的官能团配对策略,为几种生物碱的全合成提供了支持,并获得了许多具有与天然产物相当结构复杂性的骨架多样的化合物。