Suppr超能文献

从非结构化临床笔记中生成真实世界证据,以检验遗传检测的临床效用:BRCA 状态案例研究。

Generating real-world evidence from unstructured clinical notes to examine clinical utility of genetic tests: use case in BRCAness.

机构信息

Division of Digital Health Sciences, Department of Health Sciences Research, Mayo Clinic, 205 3rd Ave SW, Rochester, MN, 55905, USA.

Division of Medical Oncology, Department of Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.

出版信息

BMC Med Inform Decis Mak. 2021 Jan 6;21(1):3. doi: 10.1186/s12911-020-01364-y.

Abstract

BACKGROUND

Next-generation sequencing provides comprehensive information about individuals' genetic makeup and is commonplace in oncology clinical practice. However, the utility of genetic information in the clinical decision-making process has not been examined extensively from a real-world, data-driven perspective. Through mining real-world data (RWD) from clinical notes, we could extract patients' genetic information and further associate treatment decisions with genetic information.

METHODS

We proposed a real-world evidence (RWE) study framework that incorporates context-based natural language processing (NLP) methods and data quality examination before final association analysis. The framework was demonstrated in a Foundation-tested women cancer cohort (N = 196). Upon retrieval of patients' genetic information using NLP system, we assessed the completeness of genetic data captured in unstructured clinical notes according to a genetic data-model. We examined the distribution of different topics regarding BRCA1/2 throughout patients' treatment process, and then analyzed the association between BRCA1/2 mutation status and the discussion/prescription of targeted therapy.

RESULTS

We identified seven topics in the clinical context of genetic mentions including: Information, Evaluation, Insurance, Order, Negative, Positive, and Variants of unknown significance. Our rule-based system achieved a precision of 0.87, recall of 0.93 and F-measure of 0.91. Our machine learning system achieved a precision of 0.901, recall of 0.899 and F-measure of 0.9 for four-topic classification and a precision of 0.833, recall of 0.823 and F-measure of 0.82 for seven-topic classification. We found in result-containing sentences, the capture of BRCA1/2 mutation information was 75%, but detailed variant information (e.g. variant types) is largely missing. Using cleaned RWD, significant associations were found between BRCA1/2 positive mutation and targeted therapies.

CONCLUSIONS

In conclusion, we demonstrated a framework to generate RWE using RWD from different clinical sources. Rule-based NLP system achieved the best performance for resolving contextual variability when extracting RWD from unstructured clinical notes. Data quality issues such as incompleteness and discrepancies exist thus manual data cleaning is needed before further analysis can be performed. Finally, we were able to use cleaned RWD to evaluate the real-world utility of genetic information to initiate a prescription of targeted therapy.

摘要

背景

下一代测序技术提供了个体基因构成的综合信息,在肿瘤学临床实践中已很常见。然而,从实际数据驱动的角度来看,遗传信息在临床决策过程中的应用尚未得到广泛研究。通过挖掘来自临床记录的真实世界数据(RWD),我们可以提取患者的遗传信息,并进一步将治疗决策与遗传信息相关联。

方法

我们提出了一个真实世界证据(RWE)研究框架,该框架结合了基于上下文的自然语言处理(NLP)方法和数据质量检查,然后再进行最终的关联分析。该框架在一个经 Foundation 测试的女性癌症队列(N=196)中得到了验证。在使用 NLP 系统检索患者的遗传信息后,我们根据遗传数据模型评估了非结构化临床记录中捕获的遗传数据的完整性。我们检查了 BRCA1/2 相关主题在患者治疗过程中的分布情况,然后分析了 BRCA1/2 突变状态与靶向治疗讨论/处方之间的关联。

结果

我们在遗传提及的临床背景中确定了七个主题,包括:信息、评估、保险、医嘱、阴性、阳性和意义不明的变异。我们的基于规则的系统实现了 0.87 的精度、0.93 的召回率和 0.91 的 F 度量。我们的机器学习系统在四主题分类方面实现了 0.901 的精度、0.899 的召回率和 0.9 的 F 度量,在七主题分类方面实现了 0.833 的精度、0.823 的召回率和 0.82 的 F 度量。我们发现,在包含结果的句子中,BRCA1/2 突变信息的捕获率为 75%,但详细的变异信息(例如变异类型)大部分缺失。使用清理后的 RWD,我们发现 BRCA1/2 阳性突变与靶向治疗之间存在显著关联。

结论

总之,我们展示了一个使用来自不同临床来源的 RWD 生成 RWE 的框架。基于规则的 NLP 系统在从非结构化临床记录中提取 RWD 时,能够针对上下文的可变性实现最佳性能。存在数据质量问题,如不完整和不一致,因此在进行进一步分析之前需要进行手动数据清理。最后,我们能够使用清理后的 RWD 评估遗传信息在实际中的效用,以启动靶向治疗的处方。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/465f/7789545/62e8f1eab0c6/12911_2020_1364_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验