Suppr超能文献

神经元和突触中的噪声使得局部皮质电路中可靠的联想记忆存储成为可能。

Noise in Neurons and Synapses Enables Reliable Associative Memory Storage in Local Cortical Circuits.

机构信息

Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115.

CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong China.

出版信息

eNeuro. 2021 Feb 25;8(1). doi: 10.1523/ENEURO.0302-20.2020. Print 2021 Jan-Feb.

Abstract

Neural networks in the brain can function reliably despite various sources of errors and noise present at every step of signal transmission. These sources include errors in the presynaptic inputs to the neurons, noise in synaptic transmission, and fluctuations in the neurons' postsynaptic potentials (PSPs). Collectively they lead to errors in the neurons' outputs which are, in turn, injected into the network. Does unreliable network activity hinder fundamental functions of the brain, such as learning and memory retrieval? To explore this question, this article examines the effects of errors and noise on the properties of model networks of inhibitory and excitatory neurons involved in associative sequence learning. The associative learning problem is solved analytically and numerically, and it is also shown how memory sequences can be loaded into the network with a biologically more plausible perceptron-type learning rule. Interestingly, the results reveal that errors and noise during learning increase the probability of memory recall. There is a trade-off between the capacity and reliability of stored memories, and, noise during learning is required for optimal retrieval of stored information. What is more, networks loaded with associative memories to capacity display many structural and dynamical features observed in local cortical circuits in mammals. Based on the similarities between the associative and cortical networks, this article predicts that connections originating from more unreliable neurons or neuron classes in the cortex are more likely to be depressed or eliminated during learning, while connections onto noisier neurons or neuron classes have lower probabilities and higher weights.

摘要

尽管在信号传输的每一步都存在各种来源的误差和噪声,但大脑中的神经网络仍能可靠地发挥功能。这些来源包括神经元突触前输入的误差、突触传递的噪声以及神经元突触后电位 (PSP) 的波动。它们共同导致神经元输出的误差,而这些误差又被注入到网络中。不可靠的网络活动是否会阻碍大脑的基本功能,如学习和记忆检索?为了探讨这个问题,本文研究了误差和噪声对参与联想序列学习的抑制性和兴奋性神经元模型网络特性的影响。通过解析和数值方法解决了联想学习问题,并展示了如何使用更符合生物学的感知机学习规则将记忆序列加载到网络中。有趣的是,结果表明学习过程中的误差和噪声会增加记忆回忆的概率。存储记忆的容量和可靠性之间存在权衡,而学习过程中的噪声对于存储信息的最佳检索是必需的。此外,容量满载联想记忆的网络显示出哺乳动物局部皮质电路中观察到的许多结构和动力学特征。基于联想网络和皮质网络之间的相似性,本文预测来自皮质中更不可靠的神经元或神经元类别的连接在学习过程中更有可能被压抑或消除,而噪声较大的神经元或神经元类别的连接则具有较低的概率和较高的权重。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed7/8114874/ce0b592d8f31/SN-ENUJ200348F001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验