体内碱基编辑拯救亨廷顿病样核纤层蛋白病小鼠。
In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice.
机构信息
Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
出版信息
Nature. 2021 Jan;589(7843):608-614. doi: 10.1038/s41586-020-03086-7. Epub 2021 Jan 6.
Hutchinson-Gilford progeria syndrome (HGPS or progeria) is typically caused by a dominant-negative C•G-to-T•A mutation (c.1824 C>T; p.G608G) in LMNA, the gene that encodes nuclear lamin A. This mutation causes RNA mis-splicing that produces progerin, a toxic protein that induces rapid ageing and shortens the lifespan of children with progeria to approximately 14 years. Adenine base editors (ABEs) convert targeted A•T base pairs to G•C base pairs with minimal by-products and without requiring double-strand DNA breaks or donor DNA templates. Here we describe the use of an ABE to directly correct the pathogenic HGPS mutation in cultured fibroblasts derived from children with progeria and in a mouse model of HGPS. Lentiviral delivery of the ABE to fibroblasts from children with HGPS resulted in 87-91% correction of the pathogenic allele, mitigation of RNA mis-splicing, reduced levels of progerin and correction of nuclear abnormalities. Unbiased off-target DNA and RNA editing analysis did not detect off-target editing in treated patient-derived fibroblasts. In transgenic mice that are homozygous for the human LMNA c.1824 C>T allele, a single retro-orbital injection of adeno-associated virus 9 (AAV9) encoding the ABE resulted in substantial, durable correction of the pathogenic mutation (around 20-60% across various organs six months after injection), restoration of normal RNA splicing and reduction of progerin protein levels. In vivo base editing rescued the vascular pathology of the mice, preserving vascular smooth muscle cell counts and preventing adventitial fibrosis. A single injection of ABE-expressing AAV9 at postnatal day 14 improved vitality and greatly extended the median lifespan of the mice from 215 to 510 days. These findings demonstrate the potential of in vivo base editing as a possible treatment for HGPS and other genetic diseases by directly correcting their root cause.
亨廷顿氏舞蹈症 - 早发型(HGPS 或早老症)通常是由 LMNA 基因中的一个显性负性 C•G 到 T•A 突变(c.1824 C>T;p.G608G)引起的,该基因编码核层粘连蛋白 A。该突变导致 RNA 剪接错误,产生毒性蛋白 progerin,导致快速衰老,并使早老症患儿的寿命缩短至约 14 年。腺嘌呤碱基编辑器(ABEs)将靶标 A•T 碱基对转换为 G•C 碱基对,副产物最少,且无需双链 DNA 断裂或供体 DNA 模板。在这里,我们描述了使用 ABE 直接纠正来自早老症患儿的培养成纤维细胞和 HGPS 小鼠模型中的致病性 HGPS 突变。将 ABE 慢病毒递送至 HGPS 患儿的成纤维细胞中,可使致病性等位基因得到 87-91%的校正,减轻 RNA 剪接错误,降低 progerin 水平,并纠正核异常。非靶向 DNA 和 RNA 编辑的无偏分析未检测到经处理的患者来源成纤维细胞中的非靶向编辑。在携带人类 LMNA c.1824 C>T 等位基因的纯合转基因小鼠中,单次眶后注射编码 ABE 的腺相关病毒 9(AAV9)可显著、持久地纠正致病性突变(注射后 6 个月,各种器官的突变校正率约为 20-60%),恢复正常的 RNA 剪接,并降低 progerin 蛋白水平。体内碱基编辑挽救了小鼠的血管病理,维持了血管平滑肌细胞计数,并防止了外膜纤维化。在出生后第 14 天注射 ABE 表达的 AAV9 可改善活力,并将小鼠的中位寿命从 215 天延长至 510 天。这些发现表明,通过直接纠正其根本原因,体内碱基编辑有可能成为治疗 HGPS 和其他遗传疾病的潜在方法。