Suppr超能文献

采用可加工光学透明方法在亚细胞分辨率下对大体积组织进行连续成像。

Continuous imaging of large-volume tissues with a machinable optical clearing method at subcellular resolution.

作者信息

Zhou Can, Zheng Ting, Luo Ting, Yan Cheng, Sun Qingtao, Ren Miao, Zhao Peilin, Chen Wu, Ji Bingqing, Wang Zhi, Li Anan, Gong Hui, Li Xiangning

机构信息

Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China.

These authors contributed equally.

出版信息

Biomed Opt Express. 2020 Nov 12;11(12):7132-7149. doi: 10.1364/BOE.405801. eCollection 2020 Dec 1.

Abstract

Optical clearing methods are widely used for three-dimensional biological information acquisition in the whole organ. However, the imaging quality of cleared tissues is often limited by ununiformed tissue clearing. By combining tissue clearing with mechanical sectioning based whole organ imaging system, we can reduce the influence of light scattering and absorption on the tissue to get isotropic and high resolution in both superficial and deep layers. However, it remains challenging for optical cleared biological tissue to maintain good sectioning property. Here, we developed a clearing method named M-CUBIC (machinable CUBIC), which combined a modified CUBIC method with PNAGA (poly-N-acryloyl glycinamide) hydrogel embedding to transparentize tissue while improving its sectioning property. With high-throughput light-sheet tomography platform (HLTP) and fluorescent micro-optical sectioning tomography (fMOST), we acquired continuous datasets with subcellular resolution from intact mouse brains for single neuron tracing, as well as the fine vascular structure of kidneys. This method can be used to acquire microstructures of multiple types of biological organs with subcellular resolutions, which can facilitate biological research.

摘要

光学透明化方法在全器官三维生物信息获取中被广泛应用。然而,透明化组织的成像质量常常受到组织透明化不均匀的限制。通过将组织透明化与基于机械切片的全器官成像系统相结合,我们可以减少光散射和吸收对组织的影响,从而在浅层和深层都获得各向同性和高分辨率的图像。然而,对于光学透明化的生物组织来说,保持良好的切片性能仍然具有挑战性。在此,我们开发了一种名为M-CUBIC(可加工CUBIC)的透明化方法,该方法将改良的CUBIC方法与PNAGA(聚N-丙烯酰甘氨酰胺)水凝胶包埋相结合,使组织透明化的同时提高其切片性能。利用高通量光片断层扫描平台(HLTP)和荧光显微光学切片断层扫描(fMOST),我们从完整的小鼠大脑中获取了具有亚细胞分辨率的连续数据集用于单个神经元追踪,以及肾脏的精细血管结构。该方法可用于获取多种类型生物器官具有亚细胞分辨率的微观结构,有助于生物学研究。

相似文献

6
Clearing for Deep Tissue Imaging.深层组织成像的清除处理
Curr Protoc Cytom. 2018 Oct;86(1):e38. doi: 10.1002/cpcy.38. Epub 2018 Jul 13.
7
Deep-learning-based whole-brain imaging at single-neuron resolution.基于深度学习的单神经元分辨率全脑成像。
Biomed Opt Express. 2020 Jun 8;11(7):3567-3584. doi: 10.1364/BOE.393081. eCollection 2020 Jul 1.
8
Imaging plant tissues: advances and promising clearing practices.植物组织成像:进展与前景广阔的透明化方法
Trends Plant Sci. 2022 Jun;27(6):601-615. doi: 10.1016/j.tplants.2021.12.006. Epub 2022 Mar 23.

本文引用的文献

2
MACS: Rapid Aqueous Clearing System for 3D Mapping of Intact Organs.MACS:用于完整器官三维映射的快速水性清除系统。
Adv Sci (Weinh). 2020 Feb 25;7(8):1903185. doi: 10.1002/advs.201903185. eCollection 2020 Apr.
3
Tissue clearing and its applications in neuroscience.组织透明化及其在神经科学中的应用。
Nat Rev Neurosci. 2020 Feb;21(2):61-79. doi: 10.1038/s41583-019-0250-1.
4
Advanced CUBIC tissue clearing for whole-organ cell profiling.高级 CUBIC 组织通透化技术用于整体器官细胞剖析。
Nat Protoc. 2019 Dec;14(12):3506-3537. doi: 10.1038/s41596-019-0240-9. Epub 2019 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验