Suppr超能文献

基于深度学习的单神经元分辨率全脑成像。

Deep-learning-based whole-brain imaging at single-neuron resolution.

作者信息

Ning Kefu, Zhang Xiaoyu, Gao Xuefei, Jiang Tao, Wang He, Chen Siqi, Li Anan, Yuan Jing

机构信息

Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China.

These authors contributed equally to this work.

出版信息

Biomed Opt Express. 2020 Jun 8;11(7):3567-3584. doi: 10.1364/BOE.393081. eCollection 2020 Jul 1.

Abstract

Obtaining fine structures of neurons is necessary for understanding brain function. Simple and effective methods for large-scale 3D imaging at optical resolution are still lacking. Here, we proposed a deep-learning-based fluorescence micro-optical sectioning tomography (DL-fMOST) method for high-throughput, high-resolution whole-brain imaging. We utilized a wide-field microscope for imaging, a U-net convolutional neural network for real-time optical sectioning, and histological sectioning for exceeding the imaging depth limit. A 3D dataset of a mouse brain with a voxel size of 0.32 × 0.32 × 2 µm was acquired in 1.5 days. We demonstrated the robustness of DL-fMOST for mouse brains with labeling of different types of neurons.

摘要

获取神经元的精细结构对于理解大脑功能至关重要。目前仍缺乏在光学分辨率下进行大规模三维成像的简单有效方法。在此,我们提出了一种基于深度学习的荧光显微光学切片断层成像(DL-fMOST)方法,用于高通量、高分辨率的全脑成像。我们利用宽场显微镜进行成像,使用U-net卷积神经网络进行实时光学切片,并结合组织学切片以突破成像深度限制。在1.5天内获取了体素大小为0.32×0.32×2 µm的小鼠脑三维数据集。我们通过对不同类型神经元进行标记,证明了DL-fMOST对小鼠脑成像的稳健性。

相似文献

1
Deep-learning-based whole-brain imaging at single-neuron resolution.基于深度学习的单神经元分辨率全脑成像。
Biomed Opt Express. 2020 Jun 8;11(7):3567-3584. doi: 10.1364/BOE.393081. eCollection 2020 Jul 1.
6
Vacuum-assisted tissue embedding for whole-heart imaging.用于全心脏成像的真空辅助组织包埋
Biomed Opt Express. 2023 May 4;14(6):2539-2550. doi: 10.1364/BOE.488766. eCollection 2023 Jun 1.
7
High-definition imaging using line-illumination modulation microscopy.使用线照明调制显微镜进行高清成像。
Nat Methods. 2021 Mar;18(3):309-315. doi: 10.1038/s41592-021-01074-x. Epub 2021 Mar 1.

引用本文的文献

本文引用的文献

2
Denoising of stimulated Raman scattering microscopy images via deep learning.通过深度学习实现受激拉曼散射显微镜图像的去噪
Biomed Opt Express. 2019 Jul 10;10(8):3860-3874. doi: 10.1364/BOE.10.003860. eCollection 2019 Aug 1.
8
Deep learning optical-sectioning method.深度学习光学切片方法。
Opt Express. 2018 Nov 12;26(23):30762-30772. doi: 10.1364/OE.26.030762.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验