College of Management, Research Institute of Business Analytics & Supply Chain Management, Shenzhen University, Shenzhen, 518060, China.
Environ Sci Pollut Res Int. 2021 Apr;28(14):17913-17927. doi: 10.1007/s11356-020-11443-2. Epub 2021 Jan 6.
The big data revolution has created data center sustainability problems, whose solutions require the consideration of environmental factors. The purpose of this study is to establish a big data center sustainability evaluation index and provide guidance for sustainable data center construction. This research formulated a big data center sustainability evaluation model that integrates multiple-criteria decision-making methods based on the analytic network process and fuzzy technique for order preference by similarity to an ideal solution (TOPSIS). Furthermore, a case study was used to examine the proposed model. The refrigeration system, layout and ventilation, data center location, data volume, and server power consumption are the five most crucial factors in determining the sustainability level of a big data center. The areas that require further development are the balancing of tasks on different IT equipment, renewable energy use, and waste heat utilization. This research provides a method or guide that can be used by managers when they build new big data centers or upgrade and optimize existing big data centers to make them more sustainable. This study is the first to assess the sustainability of a big data center according to multiple criteria decision-making methods, in which fuzzy theory is applied to evaluate the imprecise and subjective judgments of decision-makers. This study provides a systematic evaluation framework that is based on qualitative and quantitative criteria and comprises the four factors of big data level, equipment level, room level, and data center level. Big data is new oil, but it is not clean oil. It is both a vital driver of economic growth and a source of environmental damage. We need to ensure that big data centers are run in a sustainable way.
大数据革命带来了数据中心可持续性问题,其解决方案需要考虑环境因素。本研究旨在建立大数据中心可持续性评估指标,为可持续数据中心建设提供指导。本研究基于网络分析法和模糊逼近理想解排序法(TOPSIS)制定了一个大数据中心可持续性评估模型,该模型集成了多准则决策方法。此外,还进行了案例研究来检验所提出的模型。制冷系统、布局和通风、数据中心位置、数据量和服务器功耗是决定大数据中心可持续性水平的五个最关键因素。需要进一步发展的领域是平衡不同 IT 设备上的任务、使用可再生能源和利用余热。本研究为管理者在新建大数据中心或升级和优化现有大数据中心时提供了一种方法或指导,使其更加可持续。本研究首次根据多准则决策方法评估大数据中心的可持续性,其中模糊理论用于评估决策者的不精确和主观判断。本研究提供了一个系统的评估框架,该框架基于定性和定量标准,并包含大数据水平、设备水平、机房水平和数据中心水平四个因素。大数据是新的石油,但它不是清洁的石油。它既是经济增长的重要驱动力,也是环境破坏的源头。我们需要确保大数据中心以可持续的方式运行。