Suppr超能文献

基于不动时间的原因特异性分位数回归。

Cause-specific quantile regression on inactivity time.

机构信息

Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

Stat Med. 2021 Mar 30;40(7):1811-1824. doi: 10.1002/sim.8871. Epub 2021 Jan 6.

Abstract

In time-to-event analysis, the traditional summary measures have been based on the hazard function, survival function, quantile event time, restricted mean event time, and residual lifetime. Under competing risks, furthermore, typical summary measures have been the cause-specific hazard function and cumulative incidence function. Recently inactivity time has recaptured attention in the literature, being interpreted as life lost. In this paper, we further interpret it as quality of life reduced and time period after transition to a drug, and propose a quantile regression model to associate the inactivity time with potential predictors under competing risks. We define the proper cumulative distribution function of the inactivity time distribution for each specific event type among those subjects who experience the same type of events during a follow-up period. A score function-type estimating equation is developed and asymptotic properties of the regression coefficient estimators are derived by assuming that competing events are censored at their occurrence times as in the cause-specific hazard analysis. The proposed approach reduces to a regular quantile regression on the inactivity time without competing risks when all types of competing events are collapsed into the same type. Due to difficulty in estimating the improper probability density function of the cause-specific inactivity distribution to evaluate the variance of the quantiles, a computationally efficient perturbation method is adopted to infer the regression coefficients. Simulation results show that our proposed method works well under the assumed finite sample settings. The proposed method is illustrated with a real dataset from a breast cancer study.

摘要

在事件时间分析中,传统的汇总指标基于风险函数、生存函数、分位数事件时间、受限平均事件时间和剩余寿命。此外,在竞争风险下,典型的汇总指标是特定原因的风险函数和累积发生率函数。最近,无活动时间在文献中重新引起了人们的关注,被解释为生命损失。在本文中,我们进一步将其解释为生活质量下降和药物治疗后过渡的时间段,并提出了一种分位数回归模型,以在竞争风险下将无活动时间与潜在预测因子相关联。我们为在随访期间经历相同类型事件的那些受试者中每种特定事件类型的无活动时间分布定义了适当的累积分布函数。通过假设竞争事件在发生时被截尾,就像特定原因的风险分析中的情况一样,开发了一种得分函数型估计方程,并推导出了回归系数估计量的渐近性质。当所有类型的竞争事件都合并为同一类型时,该方法简化为没有竞争风险的常规分位数回归。由于很难估计特定原因的无活动分布的不当概率密度函数来评估分位数的方差,因此采用了一种计算效率高的摄动方法来推断回归系数。模拟结果表明,我们提出的方法在假定的有限样本设置下效果良好。该方法通过乳腺癌研究的真实数据集进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验