Suppr超能文献

基于无活动时间的分位数回归。

Quantile regression on inactivity time.

机构信息

Department of Preventive Medicine (Biostatistics), Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston, Houston, TX, USA.

出版信息

Stat Methods Med Res. 2021 May;30(5):1332-1346. doi: 10.1177/0962280221995977. Epub 2021 Mar 20.

Abstract

The inactivity time, or lost lifespan specifically for mortality data, concerns time from occurrence of an event of interest to the current time point and has recently emerged as a new summary measure for cumulative information inherent in time-to-event data. This summary measure provides several benefits over the traditional methods, including more straightforward interpretation yet less sensitivity to heavy censoring. However, there exists no systematic modeling approach to inferring the quantile inactivity time in the literature. In this paper, we propose a semi-parametric regression method for the quantiles of the inactivity time distribution under right censoring. The consistency and asymptotic normality of the regression parameters are established. To avoid estimation of the probability density function of the inactivity time distribution under censoring, we propose a computationally efficient method for estimating the variance-covariance matrix of the regression coefficient estimates. Simulation results are presented to validate the finite sample properties of the proposed estimators and test statistics. The proposed method is illustrated with a real dataset from a clinical trial on breast cancer.

摘要

静止时间,或特定于死亡率数据的丧失寿命,是指从感兴趣事件发生到当前时间点的时间,最近已成为时间事件数据中固有累积信息的新综合指标。与传统方法相比,该综合指标具有几个优势,包括更直接的解释,而对重度删失的敏感性较低。然而,在文献中,没有系统的建模方法来推断静止时间的分位数。在本文中,我们提出了一种在右删失下对静止时间分布分位数进行半参数回归的方法。建立了回归参数的一致性和渐近正态性。为了避免在删失下估计静止时间分布的概率密度函数,我们提出了一种计算效率高的方法来估计回归系数估计值的方差-协方差矩阵。给出了模拟结果以验证所提出估计量和检验统计量的有限样本性质。该方法通过乳腺癌临床试验的真实数据集进行了说明。

相似文献

1
Quantile regression on inactivity time.基于无活动时间的分位数回归。
Stat Methods Med Res. 2021 May;30(5):1332-1346. doi: 10.1177/0962280221995977. Epub 2021 Mar 20.
2
Cause-specific quantile regression on inactivity time.基于不动时间的原因特异性分位数回归。
Stat Med. 2021 Mar 30;40(7):1811-1824. doi: 10.1002/sim.8871. Epub 2021 Jan 6.
3
Nonparametric inference on quantile lost lifespan.关于分位数损失寿命的非参数推断。
Biometrics. 2017 Mar;73(1):252-259. doi: 10.1111/biom.12555. Epub 2016 Jul 5.
4
Regression on quantile residual life.分位数剩余寿命回归。
Biometrics. 2009 Dec;65(4):1203-12. doi: 10.1111/j.1541-0420.2009.01196.x.
7
Cause-specific quantile residual life regression.特定病因分位数剩余寿命回归
Stat Methods Med Res. 2017 Aug;26(4):1912-1924. doi: 10.1177/0962280215592426. Epub 2015 Jun 24.
8
Quantile difference estimation with censoring indicators missing at random.带有随机缺失删失指示变量的分位数差估计。
Lifetime Data Anal. 2024 Apr;30(2):345-382. doi: 10.1007/s10985-023-09614-7. Epub 2024 Jan 18.
10
Non-crossing weighted kernel quantile regression with right censored data.带右删失数据的非交叉加权核分位数回归
Lifetime Data Anal. 2016 Jan;22(1):100-21. doi: 10.1007/s10985-014-9314-8. Epub 2014 Dec 16.

本文引用的文献

3
Nonparametric inference on quantile lost lifespan.关于分位数损失寿命的非参数推断。
Biometrics. 2017 Mar;73(1):252-259. doi: 10.1111/biom.12555. Epub 2016 Jul 5.
4
Cause-specific quantile residual life regression.特定病因分位数剩余寿命回归
Stat Methods Med Res. 2017 Aug;26(4):1912-1924. doi: 10.1177/0962280215592426. Epub 2015 Jun 24.
8
Regression on quantile residual life.分位数剩余寿命回归。
Biometrics. 2009 Dec;65(4):1203-12. doi: 10.1111/j.1541-0420.2009.01196.x.
9
Life tables for natural populations of animals.动物自然种群的生命表
Q Rev Biol. 1947 Dec;22(4):283-314. doi: 10.1086/395888.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验