Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
B arcelona Stem Cell Bank, Regenerative Medicine Programme, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain.
Hum Reprod Update. 2021 Apr 21;27(3):501-530. doi: 10.1093/humupd/dmaa054.
The embryo implantation process is crucial for the correct establishment and progress of pregnancy. During implantation, the blastocyst trophectoderm cells attach to the epithelium of the endometrium, triggering intense cell-to-cell crosstalk that leads to trophoblast outgrowth, invasion of the endometrial tissue, and formation of the placenta. However, this process, which is vital for embryo and foetal development in utero, is still elusive to experimentation because of its inaccessibility. Experimental implantation is cumbersome and impractical in adult animal models and is inconceivable in humans.
A number of custom experimental solutions have been proposed to recreate different stages of the implantation process in vitro, by combining a human embryo (or a human embryo surrogate) and endometrial cells (or a surrogate for the endometrial tissue). In vitro models allow rapid high-throughput interrogation of embryos and cells, and efficient screening of molecules, such as cytokines, drugs, or transcription factors, that control embryo implantation and the receptivity of the endometrium. However, the broad selection of available in vitro systems makes it complicated to decide which system best fits the needs of a specific experiment or scientific question. To orient the reader, this review will explore the experimental options proposed in the literature, and classify them into amenable categories based on the embryo/cell pairs employed.The goal is to give an overview of the tools available to study the complex process of human embryo implantation, and explain the differences between them, including the advantages and disadvantages of each system.
We performed a comprehensive review of the literature to come up with different categories that mimic the different stages of embryo implantation in vitro, ranging from initial blastocyst apposition to later stages of trophoblast invasion or gastrulation. We will also review recent breakthrough advances on stem cells and organoids, assembling embryo-like structures and endometrial tissues.
We highlight the most relevant systems and describe the most significant experiments. We focus on in vitro systems that have contributed to the study of human reproduction by discovering molecules that control implantation, including hormones, signalling molecules, transcription factors and cytokines.
The momentum of this field is growing thanks to the use of stem cells to build embryo-like structures and endometrial tissues, and the use of bioengineering to extend the life of embryos in culture. We propose to merge bioengineering methods derived from the fields of stem cells and reproduction to develop new systems covering a wider window of the implantation process.
胚胎着床过程对于妊娠的正确建立和进展至关重要。在着床过程中,囊胚滋养外胚层细胞附着在内膜上皮细胞上,引发强烈的细胞间信号转导,导致滋养层细胞的生长、子宫内膜组织的浸润和胎盘的形成。然而,由于其不可及性,这个对胚胎和胎儿在子宫内发育至关重要的过程仍然难以通过实验来研究。在成年动物模型中进行实验性着床既繁琐又不切实际,在人类中更是不可能。
已经提出了许多定制的实验解决方案,通过将人类胚胎(或人类胚胎替代物)和子宫内膜细胞(或子宫内膜组织的替代物)结合在一起,在体外重现着床过程的不同阶段。体外模型允许快速高通量地检测胚胎和细胞,并有效地筛选控制胚胎着床和子宫内膜容受性的分子,如细胞因子、药物或转录因子。然而,可用的体外系统的广泛选择使得很难决定哪个系统最适合特定实验或科学问题的需要。为了引导读者,本综述将探讨文献中提出的实验选择,并根据所使用的胚胎/细胞对将其分类为合适的类别。目的是概述可用于研究人类胚胎着床这一复杂过程的工具,并解释它们之间的差异,包括每个系统的优缺点。
我们对文献进行了全面的综述,提出了不同的类别,模拟了体外胚胎着床的不同阶段,从初始囊胚附着到滋养层细胞的后期浸润或原肠胚形成。我们还将回顾最近在干细胞和类器官方面的突破性进展,这些进展组装了类胚胎结构和子宫内膜组织。
我们突出了最相关的系统,并描述了最重要的实验。我们重点介绍了对研究人类生殖做出重要贡献的体外系统,这些系统通过发现控制着床的分子,包括激素、信号分子、转录因子和细胞因子,来揭示了这一过程。
由于使用干细胞构建类胚胎结构和子宫内膜组织,以及使用生物工程延长胚胎在培养中的寿命,该领域的发展势头正在增强。我们建议将干细胞和生殖领域衍生的生物工程方法结合起来,开发涵盖着床过程更广泛窗口的新系统。