Alias Nabilah, Ali Umar Akrajas, Malek Nurul Ain Abd, Liu Kai, Li Xiaoguo, Abdullah Nur Adliha, Rosli Mohd Mustaqim, Abd Rahman Mohd Yusri, Shi Zejiao, Zhang Xin, Zhang Haijuan, Liu Fengcai, Wang Jiao, Zhan Yiqiang
Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia.
ACS Appl Mater Interfaces. 2021 Jan 20;13(2):3051-3061. doi: 10.1021/acsami.0c20137. Epub 2021 Jan 7.
A deficiency in the photoelectrical dynamics at the interface due to the surface traps of the TiO electron transport layer (ETL) has been the critical factor for the inferiority of the power conversion efficiency (PCE) in the perovskite solar cells. Despite its excellent energy level alignment with most perovskite materials, its large density of surface defect as a result of sub lattice vacancies has been the critical hurdle for an efficient photovoltaic process in the device. Here, we report that atoms thick 2D TiS layer grown on the surface of a (001) faceted and single-crystalline TiO nanograss (NG) ETL have effectively passivated the defects, boosting the charge extractability, carrier mobility, external quantum efficiency, and the device stability. These properties allow the perovskite solar cells (PSCs) to produce a PCE as high as 18.73% with short-circuit current density (), open-circuit voltage (), and fill-factor (FF) values as high as 22.04 mA/cm, 1.13 V, and 0.752, respectively, a 3.3% improvement from the pristine TiO-NG-based PSCs. The present approach should find an extensive application for controlling the photoelectrical dynamic deficiency in perovskite solar cells.
由于二氧化钛电子传输层(ETL)的表面陷阱导致界面处光电动力学的缺陷,一直是钙钛矿太阳能电池功率转换效率(PCE)较低的关键因素。尽管其与大多数钙钛矿材料具有优异的能级匹配,但由于亚晶格空位导致的大量表面缺陷,一直是该器件中高效光伏过程的关键障碍。在此,我们报道在(001)面的单晶TiO纳米草(NG)ETL表面生长的原子级厚度的二维TiS层有效地钝化了缺陷,提高了电荷提取能力、载流子迁移率、外量子效率和器件稳定性。这些特性使钙钛矿太阳能电池(PSC)的PCE高达18.73%,短路电流密度()、开路电压()和填充因子(FF)分别高达22.04 mA/cm、1.13 V和0.752,比基于原始TiO-NG的PSC提高了3.3%。本方法应在控制钙钛矿太阳能电池中的光电动力学缺陷方面得到广泛应用。