Suppr超能文献

用于有机太阳能电池的迁移学习设计聚合物。

Transfer Learned Designer Polymers For Organic Solar Cells.

机构信息

Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States.

Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States.

出版信息

J Chem Inf Model. 2021 Jan 25;61(1):134-142. doi: 10.1021/acs.jcim.0c01157. Epub 2021 Jan 7.

Abstract

Organic photovoltaic (OPV) materials have been examined extensively over the past two decades for solar cell applications because of the potential for device flexibility, low-temperature solution processability, and negligible environmental impact. However, discovery of new candidate OPV materials, especially polymer-based electron donors, that demonstrate notable power conversion efficiencies (PCEs), is nontrivial and time-intensive exercise given the extensive set of possible chemistries. Recent progress in machine learning accelerated materials discovery has facilitated to address this challenge, with molecular line representations, such as Simplified Molecular-Input Line-Entry Systems (SMILES), gaining popularity as molecular fingerprints describing the donor chemical structures. Here, we employ a transfer learning based recurrent neural (LSTM) model, which harnesses the SMILES molecular fingerprints as an input to generate novel designer chemistries for OPV devices. The generative model, perfected on a small focused OPV data set, predicts new polymer repeat units with potentially high PCE. Calculations of the similarity coefficient between the known and the generated polymers corroborate the accuracy of the model predictability as a function of the underlying chemical specificity. The data-enabled framework is sufficiently generic for use in accelerated machine learned materials discovery for various chemistries and applications, mining the hitherto available experimental and computational data.

摘要

有机光伏 (OPV) 材料在过去的二十年中被广泛研究用于太阳能电池应用,因为它们具有器件灵活性、低温溶液处理能力和环境影响可忽略等优点。然而,鉴于可能的化学物质种类繁多,发现新的候选 OPV 材料,特别是基于聚合物的电子给体,具有显著的功率转换效率 (PCE),并非易事,而且需要大量的时间。最近机器学习在加速材料发现方面的进展,使得解决这一挑战成为可能,其中分子线表示法,例如简化分子输入线进入系统 (SMILES),作为描述供体化学结构的分子指纹越来越受欢迎。在这里,我们采用基于转移学习的递归神经网络 (LSTM) 模型,该模型利用 SMILES 分子指纹作为输入,为 OPV 器件生成新的设计化学物质。在一个小型的聚焦 OPV 数据集上进行完善的生成模型,预测了具有潜在高 PCE 的新型聚合物重复单元。已知和生成聚合物之间相似系数的计算证实了该模型作为函数的预测准确性具有化学特异性的基础。该数据驱动的框架足够通用,可以用于各种化学物质和应用的加速机器学习材料发现,挖掘迄今为止可用的实验和计算数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验