Malashin Ivan, Tynchenko Vadim, Gantimurov Andrei, Nelyub Vladimir, Borodulin Aleksei
Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical University, Moscow 105005, Russia.
Scientific Department, Far Eastern Federal University, Vladivostok 690922, Russia.
Polymers (Basel). 2024 Sep 14;16(18):2607. doi: 10.3390/polym16182607.
This review explores the application of Long Short-Term Memory (LSTM) networks, a specialized type of recurrent neural network (RNN), in the field of polymeric sciences. LSTM networks have shown notable effectiveness in modeling sequential data and predicting time-series outcomes, which are essential for understanding complex molecular structures and dynamic processes in polymers. This review delves into the use of LSTM models for predicting polymer properties, monitoring polymerization processes, and evaluating the degradation and mechanical performance of polymers. Additionally, it addresses the challenges related to data availability and interpretability. Through various case studies and comparative analyses, the review demonstrates the effectiveness of LSTM networks in different polymer science applications. Future directions are also discussed, with an emphasis on real-time applications and the need for interdisciplinary collaboration. The goal of this review is to connect advanced machine learning (ML) techniques with polymer science, thereby promoting innovation and improving predictive capabilities in the field.
本综述探讨了长短期记忆(LSTM)网络(一种特殊类型的递归神经网络(RNN))在聚合物科学领域的应用。LSTM网络在对序列数据进行建模和预测时间序列结果方面已显示出显著成效,而这对于理解聚合物中的复杂分子结构和动态过程至关重要。本综述深入研究了LSTM模型在预测聚合物性能、监测聚合过程以及评估聚合物的降解和机械性能方面的应用。此外,它还探讨了与数据可用性和可解释性相关的挑战。通过各种案例研究和比较分析,本综述展示了LSTM网络在不同聚合物科学应用中的有效性。还讨论了未来的发展方向,重点是实时应用以及跨学科合作的必要性。本综述的目的是将先进的机器学习(ML)技术与聚合物科学联系起来,从而推动该领域的创新并提高预测能力。