Suppr超能文献

岩溶稻田中铁(II)的微好氧氧化耦合同时的碳固定、As(III)氧化和固存。

Microaerophilic Oxidation of Fe(II) Coupled with Simultaneous Carbon Fixation and As(III) Oxidation and Sequestration in Karstic Paddy Soil.

机构信息

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou510650, China.

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang550081, China.

出版信息

Environ Sci Technol. 2021 Mar 16;55(6):3634-3644. doi: 10.1021/acs.est.0c05791. Epub 2021 Jan 7.

Abstract

Microaerophilic Fe(II)-oxidizing bacteria are often chemolithoautotrophs, and the Fe(III) (oxyhydr)oxides they form could immobilize arsenic (As). If such microbes are active in karstic paddy soils, their activity would help increase soil organic carbon and mitigate As contamination. We therefore used gel-stabilized gradient systems to cultivate microaerophilic Fe(II)-oxidizing bacteria from karstic paddy soil to investigate their capacity for Fe(II) oxidation, carbon fixation, and As sequestration. Stable isotope probing demonstrated the assimilation of inorganic carbon at a maximum rate of 8.02 mmol C m d. Sequencing revealed that , , , , , , unclassified , and unclassified were fixing carbon. Fe(II) oxidation produced Fe(III) (oxyhydr)oxides, which can absorb and/or coprecipitate As. Adding As(III) decreased the diversity of functional bacteria involved in carbon fixation, the relative abundance of predicted carbon fixation genes, and the amount of carbon fixed. Although the rate of Fe(II) oxidation was also lower in the presence of As(III), over 90% of the As(III) was sequestered after oxidation. The potential for microbially mediated As(III) oxidation was revealed by the presence of arsenite oxidase gene (), denoting the potential of the Fe(II)-oxidizing and autotrophic microbial community to also oxidize As(III). Thisstudy demonstrates that carbon fixation coupled to Fe(II) oxidation can increase the carbon content in soils by microaerophilic Fe(II)-oxidizing bacteria, as well as accelerate As(III) oxidation and sequester it in association with Fe(III) (oxyhydr)oxides.

摘要

微好氧亚铁氧化细菌通常是化能自养生物,它们形成的 Fe(III)(氧)氢氧化物可以固定砷(As)。如果这些微生物在岩溶稻田中活跃,它们的活动将有助于增加土壤有机碳并减轻 As 污染。因此,我们使用凝胶稳定的梯度系统从岩溶稻田中培养微好氧亚铁氧化细菌,以研究它们氧化 Fe(II)、固定碳和固定 As 的能力。稳定同位素示踪法表明,无机碳的最大同化速率为 8.02 mmol C m d。测序结果表明, , , , ,未分类,和未分类正在固定碳。Fe(II)氧化产生 Fe(III)(氧)氢氧化物,可吸附和/或共沉淀 As。添加 As(III) 降低了参与固碳的功能细菌的多样性、预测固碳基因的相对丰度以及固定的碳量。尽管在存在 As(III)的情况下 Fe(II)氧化的速率也较低,但超过 90%的 As(III)在氧化后被固定。砷酸盐氧化酶基因 () 的存在揭示了微生物介导的 As(III)氧化的潜力,这表示亚铁氧化和自养微生物群落也有潜力氧化 As(III)。本研究表明,与 Fe(II)氧化偶联的固碳可以通过微好氧亚铁氧化细菌增加土壤中的碳含量,同时加速 As(III)氧化并与 Fe(III)(氧)氢氧化物结合固定它。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验