Zhao Zhijuan, Hou Tianyu, Wu Nannan, Jiao Shuping, Zhou Ke, Yin Jun, Suk Ji Won, Cui Xu, Zhang Mingfei, Li Shaopeng, Qu Yan, Xie Weiguang, Li Xi-Bo, Zhao Chuanxi, Fu Yong, Hong Rong-Dun, Guo Shengshi, Lin Dingqu, Cai Weiwei, Mai Wenjie, Luo Zhengtang, Tian Yongtao, Lai Yun, Liu Yuanyue, Colombo Luigi, Hao Yufeng
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China.
National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
Nano Lett. 2021 Jan 27;21(2):1161-1168. doi: 10.1021/acs.nanolett.0c04724. Epub 2021 Jan 7.
Corrosion of metals in atmospheric environments is a worldwide problem in industry and daily life. Traditional anticorrosion methods including sacrificial anodes or protective coatings have performance limitations. Here, we report atomically thin, polycrystalline few-layer graphene (FLG) grown by chemical vapor deposition as a long-term protective coating film for copper (Cu). A six-year old, FLG-protected Cu is visually shiny and detailed material characterizations capture no sign of oxidation. The success of the durable anticorrosion film depends on the misalignment of grain boundaries between adjacent graphene layers. Theoretical calculations further found that corrosive molecules always encounter extremely high energy barrier when diffusing through the FLG layers. Therefore, the FLG is able to prevent the corrosive molecules from reaching the underlying Cu surface. This work highlights the interesting structures of polycrystalline FLG and sheds insight into the atomically thin coatings for various applications.
金属在大气环境中的腐蚀是工业和日常生活中的一个全球性问题。包括牺牲阳极或防护涂层在内的传统防腐方法存在性能限制。在此,我们报告了通过化学气相沉积生长的原子级薄的多晶少层石墨烯(FLG)作为铜(Cu)的长期保护涂层。一块使用了六年的、由FLG保护的铜在外观上有光泽,详细的材料表征未发现氧化迹象。这种耐用防腐膜的成功取决于相邻石墨烯层之间晶界的错位。理论计算进一步发现,腐蚀性分子在通过FLG层扩散时总是会遇到极高的能垒。因此,FLG能够阻止腐蚀性分子到达下面的铜表面。这项工作突出了多晶FLG的有趣结构,并为各种应用的原子级薄涂层提供了见解。