Hou Tianyu, Li Di, Qu Yan, Hao Yufeng, Lai Yun
National Laboratory of Solid State Microstructures, School of Physics, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
Materials (Basel). 2023 Nov 3;16(21):7030. doi: 10.3390/ma16217030.
Acquiring homogeneous and reproducible wafer-scale transition metal dichalcogenide (TMDC) films is crucial for modern electronics. Metal-organic chemical vapor deposition (MOCVD) offers a promising approach for scalable production and large-area integration. However, during MOCVD synthesis, extraneous carbon incorporation due to organosulfur precursor pyrolysis is a persistent concern, and the role of unintentional carbon incorporation remains elusive. Here, we report the large-scale synthesis of molybdenum disulfide (MoS) thin films, accompanied by the formation of amorphous carbon layers. Using Raman, photoluminescence (PL) spectroscopy, and transmission electron microscopy (TEM), we confirm how polycrystalline MoS combines with extraneous amorphous carbon layers. Furthermore, by fabricating field-effect transistors (FETs) using the carbon-incorporated MoS films, we find that traditional n-type MoS can transform into p-type semiconductors owing to the incorporation of carbon, a rare occurrence among TMDC materials. This unexpected behavior expands our understanding of TMDC properties and opens up new avenues for exploring novel device applications.
获得均匀且可重复的晶圆级过渡金属二硫属化物(TMDC)薄膜对于现代电子学至关重要。金属有机化学气相沉积(MOCVD)为可扩展生产和大面积集成提供了一种有前景的方法。然而,在MOCVD合成过程中,由于有机硫前驱体热解导致的外来碳掺入一直是一个令人担忧的问题,并且无意碳掺入的作用仍然难以捉摸。在此,我们报道了二硫化钼(MoS)薄膜的大规模合成,同时伴随着非晶碳层的形成。利用拉曼光谱、光致发光(PL)光谱和透射电子显微镜(TEM),我们证实了多晶MoS如何与外来非晶碳层结合。此外,通过使用含碳的MoS薄膜制造场效应晶体管(FET),我们发现传统的n型MoS由于碳的掺入可以转变为p型半导体,这在TMDC材料中很少见。这种意外行为扩展了我们对TMDC特性的理解,并为探索新型器件应用开辟了新途径。