Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.
Int J Radiat Oncol Biol Phys. 2021 Jun 1;110(2):574-586. doi: 10.1016/j.ijrobp.2020.12.048. Epub 2021 Jan 4.
PURPOSE: Irradiation with ultrahigh dose rates (FLASH) has reemerged as a promising radiation therapy approach to effectively lower potential damage burden on normal tissue without sacrificing tumor control. However, the large number of recent FLASH studies have been conducted under vastly different experimental conditions and circumstances (ie, investigated biological endpoint, radiation quality, and environmental oxygen level), with unverified biological mechanisms of action and unexplored interplay effect of the main dependencies. To facilitate radiobiological investigation of FLASH phenomena and assessment of clinical applicability, we present an extension of the mechanistic radiobiological model "UNified and VERSatile bio response Engine" (UNIVERSE). METHODS AND MATERIALS: The dynamic (time-dependent) extension of UNIVERSE was developed incorporating fundamental temporal mechanisms necessary for dose-rate effect prediction, ie, DNA damage repair kinetics [DDRK], oxygen depletion and reoxygenation during irradiation. Model performance in various experimental conditions is validated based on a large panel of in vitro and in vivo data from the literature. The effect of dose, dose rate, oxygen tension, tissue-type, beam quality and DDRK is analyzed. RESULTS: UNIVERSE adequately reproduces dose-, dose-rate- and oxygen tension-dependent influence on cell killing. For the studied systems, results indicate that the extent of cell/tissue sparing effect, if present at all, strongly depends on DDRK and beam quality used for reference conventional irradiation. A validated mechanistic framework for predicting clinically relevant endpoints comparing conventional and FLASH high-dose-rate effect has been successfully established, relying on time-dependent processing of radiation-induced damage classes taking variable oxygen tension into account. CONCLUSIONS: Highlighted by UNIVERSE itself, the multidimensional nature of this relative sparing effect using high-dose-rate radiation compared with conventional means underlines the importance of robust quantification of biophysical characteristics and consistent, well-documented experimental conditions both in vitro and in vivo before clinical translation. To further elucidate underlying mechanisms and appraise clinical viability, UNIVERSE can provide reliable prediction for biophysical investigations of radiation therapy using ultrahigh dose rate.
目的:超高剂量率(FLASH)照射作为一种有前途的放射治疗方法,已重新出现,它可以有效地降低正常组织的潜在损伤负担,而不影响肿瘤控制。然而,最近的大量 FLASH 研究是在截然不同的实验条件和环境下进行的(即,研究的生物学终点、辐射质量和环境氧水平),其作用机制尚未得到验证,主要依赖性的相互作用效应也尚未得到探索。为了促进 FLASH 现象的放射生物学研究和评估其临床适用性,我们提出了对“统一和通用生物反应引擎”(UNIVERSE)机制放射生物学模型的扩展。
方法和材料:通过纳入必要的基本时间机制,对 UNIVERSE 进行了动态(时间依赖)扩展,这些机制可用于预测剂量率效应,即照射过程中的 DNA 损伤修复动力学(DDRK)、氧耗竭和再氧合。根据文献中大量的体外和体内数据,验证了模型在各种实验条件下的性能。分析了剂量、剂量率、氧张力、组织类型、束质和 DDRK 的影响。
结果:UNIVERSE 充分再现了剂量、剂量率和氧张力对细胞杀伤的影响。对于所研究的系统,结果表明,如果存在细胞/组织保护效应,其程度强烈取决于所使用的 DDRK 和用于参考常规照射的束质。已经成功建立了一种用于预测比较常规和 FLASH 高剂量率效应的临床相关终点的机制框架,该框架依赖于考虑可变氧张力的辐射诱导损伤类别的时间依赖性处理。
结论:UNIVERSE 本身强调了与传统方法相比,高剂量率辐射的相对保护效应的多维性质,这突出了在临床转化之前,对生物物理特性进行准确量化以及在体外和体内保持一致、有文件记录的实验条件的重要性。为了进一步阐明潜在机制并评估临床可行性,UNIVERSE 可为使用超高剂量率进行放射治疗的生物物理研究提供可靠的预测。
Int J Radiat Oncol Biol Phys. 2021-6-1
Int J Radiat Oncol Biol Phys. 2020-7-1
Int J Radiat Oncol Biol Phys. 2020-2-1
Int J Radiat Oncol Biol Phys. 2019-11-20
Int J Radiat Oncol Biol Phys. 2021-3-1
Int J Radiat Oncol Biol Phys. 2021-9-1
Cancers (Basel). 2025-1-3
Int J Mol Sci. 2024-11-21
Front Oncol. 2024-7-12
Nat Rev Clin Oncol. 2022-12
Oncol Lett. 2022-10-5