Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands.
Varian Medical Systems, 3120 Hansen Way, Palo Alto, California.
Int J Radiat Oncol Biol Phys. 2020 Mar 1;106(3):621-629. doi: 10.1016/j.ijrobp.2019.11.011. Epub 2019 Nov 20.
Preclinical research into ultrahigh dose rate (eg, ≥40 Gy/s) "FLASH"-radiation therapy suggests a decrease in side effects compared with conventional irradiation while maintaining tumor control. When FLASH is delivered using a scanning proton beam, tissue becomes subject to a spatially dependent range of dose rates. This study systematically investigates dose rate distributions and delivery times for proton FLASH plans using stereotactic lung irradiation as the paradigm.
Stereotactic lung radiation therapy FLASH-plans, using 244 MeV scanning proton transmission beams, with the Bragg peak behind the body, were made for 7 patients. Evaluated parameters were dose rate distribution within a beam, overall irradiation time, number of times tissue is irradiated, and quality of the FLASH-plans compared with the clinical volumetric-modulated arc therapy (VMAT) plans.
Sparing of lungs, thoracic wall, and heart in the FLASH-plans was equal to or better than that in the VMAT-plans. For a spot peak dose rate (SPDR, the dose rate in the middle of the spot) of 100 Gy/s, ∼40% of dose is delivered at FLASH dose rates, and for SPDR = 360 Gy/s this increased to ∼75%. One-hundred percent FLASH dose rate cannot be achieved owing to small contributions from distant spots with lower dose rates. The total irradiation time varied between 300 to 730 ms, and around 85% of the dose-receiving body volume was irradiated by either 1 or 2 beams.
Clinical implementation of FLASH using scanning proton beams requires multiple treatment planning considerations: dosimetric, temporal, and spatial parameters all seem important. The FLASH efficiency of a scanning proton beam increases with SPDR. The methodology proposed in this proof-of-principle study provides a framework for evaluating the FLASH characteristics of scanning proton beam plans and can be adapted as FLASH parameters are better defined. It currently seems logical to optimize plans for the shortest delivery time, maximum amount of high dose rate coverage, and maximum amount of single beam and continuous irradiation.
超高压率(例如,≥40Gy/s)“FLASH”放射治疗的临床前研究表明,与传统照射相比,副作用降低,同时保持肿瘤控制。当使用扫描质子束进行 FLASH 时,组织会受到空间相关的剂量率范围的影响。本研究系统地研究了立体定向肺照射作为范例的质子 FLASH 计划的剂量率分布和输送时间。
使用 244 MeV 扫描质子传输束,在身体后面的布拉格峰,为 7 名患者制作了立体定向肺放射治疗 FLASH 计划。评估的参数是束内剂量率分布、总照射时间、组织照射次数以及与临床容积调制弧形治疗(VMAT)计划相比的 FLASH 计划的质量。
FLASH 计划中对肺部、胸壁和心脏的保护与 VMAT 计划相当或更好。对于 100Gy/s 的点峰剂量率(SPDR,点中心的剂量率),约 40%的剂量以 FLASH 剂量率输送,而对于 SPDR=360Gy/s,这一比例增加到约 75%。由于来自剂量率较低的远地点的小贡献,无法实现 100%的 FLASH 剂量率。总照射时间在 300 到 730 毫秒之间变化,大约 85%的受照体体积由 1 或 2 束照射。
使用扫描质子束实现 FLASH 的临床应用需要考虑多个治疗计划因素:剂量学、时间和空间参数似乎都很重要。扫描质子束的 FLASH 效率随 SPDR 增加而增加。本研究提出的方法为评估扫描质子束计划的 FLASH 特性提供了一个框架,并可以根据 FLASH 参数的更好定义进行调整。目前,优化最短输送时间、最大高剂量率覆盖、最大单束和连续照射的计划似乎是合理的。