Suppr超能文献

基于 BiOI 纳米花/TiO 纳米管的可见光驱动光电化学传感平台用于环境样品中莠去津的检测。

Visible-light-driven photoelectrochemical sensing platform based on BiOI nanoflowers/TiO nanotubes for detection of atrazine in environmental samples.

机构信息

Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China.

Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi 030006, PR China.

出版信息

J Hazard Mater. 2021 May 5;409:124894. doi: 10.1016/j.jhazmat.2020.124894. Epub 2020 Dec 18.

Abstract

In this work, a visible-light-driven photoelectrochemical (PEC) sensing platform was developed based on BiOI nanoflowers/TiO nanotubes (BiOI NFs/TiO NTs) for detection of atrazine (ATZ). The BiOI NFs/TiO NTs p-n heterojunctions synthesized by decorating BiOI NFs on TiO NTs via simple hydrothermal approach exhibit strong visible-light absorption ability, high photocurrent response and PEC activity. Thus BiOI NFs/TiO NTs heterostructures were first explored to act as the photoelectrode for the immobilization of the anti-ATZ aptamer to develop a PEC sensing platform. The design PEC aptasensing platform exhibits prominent analytical performance for determination of ATZ with a low detection limit of 0.5 pM under visible-light irradiation, and displays good selectivity for ATZ in the control experiments. The superior behavior of the sensing platform could be ascribed to the design of the appropriate sensing material with tubular microstructure, excellent PEC response of the photoelectrode, and the large loading amount of aptamer. Meanwhile, the PEC sensing platform was used to determine ATZ in environmental samples and a satisfied result was obtained.

摘要

在这项工作中,我们基于 BiOI 纳米花/TiO 纳米管(BiOI NFs/TiO NTs)开发了一种可见光驱动的光电化学(PEC)传感平台,用于检测莠去津(ATZ)。通过简单的水热法在 TiO NTs 上修饰 BiOI NFs 合成的 BiOI NFs/TiO NTs p-n 异质结具有很强的可见光吸收能力、高光电流响应和 PEC 活性。因此,我们首次探索了 BiOI NFs/TiO NTs 异质结构作为固定抗-ATZ 适体的光电极,以开发 PEC 传感平台。该设计的 PEC 适体传感平台在可见光照射下表现出出色的分析性能,对 ATZ 的检测限低至 0.5 pM,并且在对照实验中对 ATZ 具有良好的选择性。传感平台的优异性能可归因于具有管状微结构的合适传感材料的设计、光电极的优异 PEC 响应以及适体的高负载量。同时,我们还将 PEC 传感平台用于环境样品中 ATZ 的测定,得到了令人满意的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验