Suppr超能文献

重新思考医学图像分析人工智能方法:精准诊断案例。

Rethinking the Approach to Artificial Intelligence for Medical Image Analysis: The Case for Precision Diagnosis.

机构信息

Chair Emeritus, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts.

Associate Professor, Department of Radiology, University of Michigan, Ann Arbor, Michigan.

出版信息

J Am Coll Radiol. 2021 Jan;18(1 Pt B):174-179. doi: 10.1016/j.jacr.2020.07.010.

Abstract

To date, widely generalizable artificial intelligence (AI) programs for medical image analysis have not been demonstrated, including for mammography. Rather than pursuing a strategy of collecting ever-larger databases in the attempt to build generalizable programs, we suggest three possible avenues for exploring a precision medicine or precision imaging approach. First, it is now technologically feasible to collect hundreds of thousands of multi-institutional cases along with other patient data, allowing stratification of patients into subpopulations that have similar characteristics in the manner discussed by the National Research Council in its white paper on precision medicine. A family of AI programs could be developed across different examination types that are matched to specific patient subpopulations. Such stratification can help address bias, including racial or ethnic bias, by allowing unbiased data aggregation for creation of subpopulations. Second, for common examinations, larger institutions may be able to collect enough of their own data to train AI programs that reflect disease prevalence and variety in their respective unique patient subpopulations. Third, high- and low-probability subpopulations can be identified by application of AI programs, thereby allowing their triage off the radiology work list. This would reduce radiologists' workloads, providing more time for interpretation of the remaining examinations. For high-volume procedures, investigators should come together to define reference standards, collect data, and compare the merits of pursuing generalizability versus a precision medicine subpopulation-based strategy.

摘要

迄今为止,尚未证明广泛适用于医学图像分析的通用人工智能 (AI) 程序,包括乳腺 X 线摄影术。我们建议从三个可能的途径探索精准医疗或精准成像方法,而不是采用收集越来越大的数据库来构建通用程序的策略。首先,现在从技术上可以收集数十万例多机构病例以及其他患者数据,从而可以按照国家研究委员会在其关于精准医学的白皮书中讨论的方式,将患者分层为具有相似特征的亚群。可以针对特定患者亚群开发一系列适用于不同检查类型的 AI 程序。这种分层有助于解决偏倚问题,包括种族或民族偏倚,因为它允许为创建亚群进行无偏倚的数据聚集。其次,对于常见的检查,大型机构可能能够收集足够多的自身数据来训练反映其各自独特患者亚群中疾病流行程度和多样性的 AI 程序。第三,通过应用 AI 程序可以识别高概率和低概率亚群,从而可以将其从放射科工作列表中进行分诊。这将减少放射科医生的工作量,为其余检查的解释提供更多时间。对于高容量的程序,研究人员应共同定义参考标准,收集数据,并比较追求通用性与基于精准医疗亚群的策略的优点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验