Suppr超能文献

探索人工智能在急诊和创伤放射科中的作用。

Exploring the Role of Artificial Intelligence in an Emergency and Trauma Radiology Department.

机构信息

Department of Trauma and Emergency Radiology, 8167Vancouver General Hospital, Vancouver, British Columbia, Canada.

McGill University, Montreal, Quebec, Canada.

出版信息

Can Assoc Radiol J. 2021 Feb;72(1):167-174. doi: 10.1177/0846537120918338. Epub 2020 Apr 20.

Abstract

Emergency and trauma radiologists, emergency department's physicians and nurses, researchers, departmental leaders, and health policymakers have attempted to discover efficient approaches to enhance the provision of quality patient care. There are increasing expectations for radiology practices to deliver a dedicated emergency radiology service providing 24/7/365 on-site attending radiologist coverage. Emergency radiologists (ERs) are pressed to meet the demand of increased imaging volume, provide accurate reports, maintain a lower proportion of discrepancy rate, and with a rapid report turnaround time of finalized reports. Thus, rendering the radiologists overburdened. The demand for an increased efficiency in providing quality care to acute patients has led to the emergence of artificial intelligence (AI) in the field. AI can be used to assist emergency and trauma radiologists deal with the ever-increasing imaging volume and workload, as AI methods have typically demonstrated a variety of applications in medical image analysis and interpretation, albeit most programs are in a training or validation phase. This article aims to offer an evidence-based discourse about the evolving role of artificial intelligence in assisting the imaging pathway in an emergency and trauma radiology department. We hope to generate a multidisciplinary discourse that addresses the technical processes, the challenges in the labour-intensive process of training, validation and testing of an algorithm, the need for emphasis on ethics, and how an emergency radiologist's role is pivotal in the execution of AI-guided systems within the context of an emergency and trauma radiology department. This exploratory narrative serves the present-day health leadership's information needs by proposing an AI supported and radiologist centered framework depicting the work flow within a department. It is suspected that the use of such a framework, if efficacious, could provide considerable benefits for patient safety and quality of care provided. Additionally, alleviating radiologist burnout and decreasing healthcare costs over time.

摘要

急诊和创伤放射科医生、急诊科医生和护士、研究人员、部门领导和卫生政策制定者都试图寻找有效的方法来提高提供高质量患者护理的水平。人们越来越期望放射科能够提供专门的急诊放射服务,提供 24/7/365 现场值班放射科医生服务。急诊放射科医生(ER)面临着满足不断增加的成像量需求、提供准确报告、保持较低的差异率以及快速报告最终报告的压力。因此,放射科医生的工作负担过重。为了满足急性患者提供高质量护理的需求,人工智能(AI)在该领域得到了应用。人工智能可以帮助急诊和创伤放射科医生应对不断增加的成像量和工作量,因为 AI 方法在医学图像分析和解释方面已经有了多种应用,尽管大多数程序仍处于培训或验证阶段。本文旨在提供一个循证的讨论,内容是关于人工智能在协助急诊和创伤放射科成像流程中的作用的演变。我们希望产生一个多学科的讨论,涉及技术流程、培训、验证和测试算法的劳动密集型过程中的挑战、对伦理的重视、以及在急诊和创伤放射科环境中,急诊放射科医生的角色在执行 AI 引导系统中的关键作用。这种探索性的叙述满足了当前医疗保健领导者的信息需求,提出了一个人工智能支持和以放射科医生为中心的框架,描绘了一个部门内的工作流程。人们怀疑,如果这种框架有效,它可以为患者安全和提供的护理质量提供巨大的好处。此外,随着时间的推移,还可以减轻放射科医生的倦怠并降低医疗保健成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验