Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States.
International Centre of Biodynamics, 1B Intrarea Portocalelor, Sector 6, 060101 Bucharest, Romania.
Anal Chem. 2021 Feb 2;93(4):2026-2037. doi: 10.1021/acs.analchem.0c03578. Epub 2021 Jan 8.
Proteins are utilized across many biomedical and pharmaceutical industries; therefore, methods for rapid and accurate monitoring of protein aggregation are needed to ensure proper product quality. Although these processes have been previously studied, it is difficult to comprehensively evaluate protein folding and aggregation by traditional characterization techniques such as atomic force microscopy (AFM), electron microscopy, or X-ray diffraction, which require sample pre-treatment and do not represent native state proteins in solution. Herein, we report early tracking of lysozyme (Lyz) aggregation states by using single-particle collision electrochemistry (SPCE) of silver nanoparticle (AgNP) redox probes. The method relies on monitoring the rapid interaction of Lyz with AgNPs, which decreases the number of single AgNPs available for collisions and ultimately the frequency of oxidative impacts in the chronoamperometric profile. When Lyz is in a non-aggregated monomeric form, the protein forms a homogeneous coverage onto the surface of AgNPs, stabilizing the particles. When Lyz is aggregated, part of the AgNP surface remains uncoated, promoting the agglomeration of Lyz-AgNP conjugates. The frequency of AgNP impacts decreases with increasing aggregation time, providing a metric to track protein aggregation. Visualizations of integrated oxidation charge-transfer data displayed significant differences between the charge transfer per impact for AgNP samples alone and in the presence of non-aggregated and aggregated Lyz with 99% confidence using parametric ANOVA tests. Electrochemical results revealed meaningful associations with UV-vis, circular dichroism, and AFM, demonstrating that SPCE can be used as an alternative method for studying protein aggregation. This electrochemical technique could serve as a powerful tool to indirectly evaluate protein stability and screen protein samples for formation of aggregates.
蛋白质在许多生物医药和制药行业中都有应用;因此,需要快速准确的监测蛋白质聚集的方法,以确保产品质量。尽管这些过程已经得到了研究,但传统的表征技术,如原子力显微镜(AFM)、电子显微镜或 X 射线衍射,很难全面评估蛋白质的折叠和聚集,因为这些技术需要样品预处理,并且不能代表溶液中的天然状态蛋白质。在此,我们报告了使用银纳米粒子(AgNP)氧化还原探针的单颗粒碰撞电化学(SPCE)来早期跟踪溶菌酶(Lyz)聚集状态的方法。该方法依赖于监测 Lyz 与 AgNP 的快速相互作用,这会减少可用于碰撞的单个 AgNP 的数量,并最终减少计时安培曲线中氧化冲击的频率。当 Lyz 处于未聚集的单体形式时,蛋白质在 AgNP 表面形成均匀的覆盖层,稳定颗粒。当 Lyz 聚集时,AgNP 表面的一部分保持未涂层,促进 Lyz-AgNP 缀合物的聚集。随着聚集时间的增加,AgNP 冲击的频率降低,提供了一种跟踪蛋白质聚集的方法。整合氧化电荷转移数据的可视化显示,在有和没有非聚集和聚集的 Lyz 存在的情况下,AgNP 样品的每个冲击的电荷转移之间存在显著差异,置信度为 99%,使用参数 ANOVA 检验。电化学结果与 UV-vis、圆二色性和 AFM 有明显的关联,表明 SPCE 可以用作研究蛋白质聚集的替代方法。这种电化学技术可以作为一种强大的工具,用于间接评估蛋白质稳定性并筛选形成聚集物的蛋白质样品。