Suppr超能文献

利用多相光催化过程进行农药脱污的数据挖掘。

Data mining for pesticide decontamination using heterogeneous photocatalytic processes.

机构信息

Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam.

Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.

出版信息

Chemosphere. 2021 May;270:129449. doi: 10.1016/j.chemosphere.2020.129449. Epub 2020 Dec 28.

Abstract

Pesticides are chemical compounds used to kill pests and weeds. Due to their nature, pesticides are potentially toxic to many organisms, including humans. Among the various methods used to decontaminate pesticides from the environment, the heterogeneous photocatalytic process is one of the most effective approaches. This study focuses on artificial intelligence (AI) techniques used to generate optimum predictive models for pesticide decontamination processes using heterogeneous photocatalytic processes. In the present study, 537 valid cases from 45 articles from January 2000 to April 2020 were filtered based on their content collected and analyzed. Based on cross-industry standard process (CRISP) methodology, a set of four classifiers were applied: Decision Trees (DT), Bayesian Network (BN), Support Vector Machines (SVM), and Feed Forward Multilayer Perceptron Neural Networks (MLP). To compare the accuracy of the selected algorithms, accuracy, and sensitivity criteria were applied. After the final analysis, the DT classification algorithm with seven factors of prediction, the accuracy of 91.06%, and sensitivity of 80.32% was selected as the optimal predictor model.

摘要

农药是用于杀死害虫和杂草的化学化合物。由于其性质,农药对包括人类在内的许多生物体都具有潜在毒性。在用于从环境中去除农药的各种方法中,多相光催化过程是最有效的方法之一。本研究重点介绍了人工智能(AI)技术,用于使用多相光催化过程生成农药去除过程的最佳预测模型。在本研究中,根据收集和分析的内容,从 2000 年 1 月至 2020 年 4 月的 45 篇文章中筛选出 537 个有效案例。基于跨行业标准流程(CRISP)方法,应用了四组分类器:决策树(DT)、贝叶斯网络(BN)、支持向量机(SVM)和前馈多层感知器神经网络(MLP)。为了比较所选算法的准确性,应用了准确性和敏感性标准。经过最终分析,选择具有七个预测因素的 DT 分类算法作为最佳预测模型,其准确率为 91.06%,灵敏度为 80.32%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验