Suppr超能文献

成石氢支持冰川下和冰前环境中的微生物初级生产。

Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments.

机构信息

Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717.

Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717.

出版信息

Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2007051117. Epub 2020 Dec 21.

Abstract

Life in environments devoid of photosynthesis, such as on early Earth or in contemporary dark subsurface ecosystems, is supported by chemical energy. How, when, and where chemical nutrients released from the geosphere fuel chemosynthetic biospheres is fundamental to understanding the distribution and diversity of life, both today and in the geologic past. Hydrogen (H) is a potent reductant that can be generated when water interacts with reactive components of mineral surfaces such as silicate radicals and ferrous iron. Such reactive mineral surfaces are continually generated by physical comminution of bedrock by glaciers. Here, we show that dissolved H concentrations in meltwaters from an iron and silicate mineral-rich basaltic glacial catchment were an order of magnitude higher than those from a carbonate-dominated catchment. Consistent with higher H abundance, sediment microbial communities from the basaltic catchment exhibited significantly shorter lag times and faster rates of net H oxidation and dark carbon dioxide (CO) fixation than those from the carbonate catchment, indicating adaptation to use H as a reductant in basaltic catchments. An enrichment culture of basaltic sediments provided with H, CO, and ferric iron produced a chemolithoautotrophic population related to with a metabolism previously thought to be restricted to (hyper)thermophiles and acidophiles. These findings point to the importance of physical and chemical weathering processes in generating nutrients that support chemosynthetic primary production. Furthermore, they show that differences in bedrock mineral composition can influence the supplies of nutrients like H and, in turn, the diversity, abundance, and activity of microbial inhabitants.

摘要

在没有光合作用的环境中,如早期地球或当代黑暗地下生态系统中,生命依赖于化学能量。化学营养物质从岩石圈中释放出来,何时何地为化能合成生物圈提供燃料,这对于理解当今和地质历史上生命的分布和多样性至关重要。氢 (H) 是一种有效的还原剂,当水与矿物表面的反应性成分(如硅酸盐自由基和亚铁)相互作用时,就会产生氢。这种反应性矿物表面会不断地通过冰川对基岩的物理粉碎而产生。在这里,我们表明,来自富含铁和硅酸盐的玄武岩冰川集水区的熔体中的溶解 H 浓度比来自碳酸盐占主导地位的集水区的 H 浓度高一个数量级。与 H 丰度较高相一致的是,来自玄武岩集水区的沉积物微生物群落的滞后时间明显缩短,净 H 氧化和暗二氧化碳 (CO) 固定的速度比来自碳酸盐集水区的群落更快,这表明它们适应了在玄武岩集水区中使用 H 作为还原剂。用 H、CO 和三价铁对富含玄武岩的沉积物进行富化培养,产生了一个与相关的化能自养种群,其代谢途径以前被认为仅限于(超)嗜热菌和嗜酸菌。这些发现表明物理和化学风化过程在产生支持化能合成初级生产的营养物质方面的重要性。此外,它们表明基岩矿物组成的差异会影响 H 和其他营养物质的供应,从而影响微生物居民的多样性、丰度和活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3b7/7812807/6880491c4023/pnas.2007051117fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验