NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China.
Psychiatry Clin Neurosci. 2021 Apr;75(4):138-144. doi: 10.1111/pcn.13194. Epub 2021 Feb 5.
Schizophrenia (SCZ) is a serious psychiatric disorder. Metabolite disturbance is an important pathogenic factor in schizophrenic patients. In this study, we aim to identify plasma lipid and amino acid biomarkers for SCZ using targeted metabolomics.
Plasma from 76 SCZ patients and 50 matched controls were analyzed using the LC/MS-based multiple reaction monitoring (MRM) metabolomics approach. A total of 182 targeted metabolites, including 22 amino acids and 160 lipids or lipid-related metabolites were observed. We used binary logistic regression analysis to determine whether the lipid and amino acid biomarkers could discriminate SCZ patients from controls. The area under the curve (AUC) from receiver operation characteristic (ROC) curve analysis was conducted to evaluate the diagnostic performance of the biomarkers panel.
We identified 19 significantly differentially expressed metabolites between the SCZ patients and the controls (false discovery rate < 0.05), including one amino acid and 18 lipids or lipid-related metabolites. The binary logistic regression-selected panel showed good diagnostic performance in the drug-naïve group (AUC = 0.936) and all SCZ patients (AUC = 0.948), especially in the drug-treated group (AUC = 0.963).
Plasma lipids and amino acids showed significant dysregulation in SCZ, which could effectively discriminate SCZ patients from controls. The LC/MS/MS-based approach provides reliable data for the objective diagnosis of SCZ.
精神分裂症(SCZ)是一种严重的精神疾病。代谢紊乱是精神分裂症患者的一个重要致病因素。在这项研究中,我们旨在使用靶向代谢组学方法鉴定精神分裂症的血浆脂质和氨基酸生物标志物。
使用基于 LC/MS 的多重反应监测(MRM)代谢组学方法分析 76 名精神分裂症患者和 50 名匹配对照者的血浆。共观察到 182 种靶向代谢物,包括 22 种氨基酸和 160 种脂质或脂质相关代谢物。我们使用二元逻辑回归分析来确定脂质和氨基酸生物标志物是否可以区分精神分裂症患者和对照者。通过接收者操作特征(ROC)曲线分析的曲线下面积(AUC)来评估生物标志物组合的诊断性能。
我们在精神分裂症患者和对照者之间鉴定出 19 种差异表达的代谢物(错误发现率<0.05),包括一种氨基酸和 18 种脂质或脂质相关代谢物。二元逻辑回归选择的面板在未经药物治疗的组(AUC=0.936)和所有精神分裂症患者(AUC=0.948)中表现出良好的诊断性能,特别是在药物治疗组(AUC=0.963)中。
精神分裂症患者的血浆脂质和氨基酸表现出明显的失调,可有效区分精神分裂症患者和对照者。基于 LC/MS/MS 的方法为精神分裂症的客观诊断提供了可靠的数据。