Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
J Biomech. 2021 Feb 12;116:110196. doi: 10.1016/j.jbiomech.2020.110196. Epub 2020 Dec 25.
Strain measurement during tissue deformation is crucial to elucidate relationships between mechanical loading and functional changes in biological tissues. When combined with specified loading conditions, assessment of strain fields can be used to craft models that accurately represent the mechanical behavior of soft tissue. Inhomogeneities in strain fields may be indicative of normal or pathological inhomogeneities in mechanical properties. In this study, we present the validation of a modified Demons registration algorithm for non-contact, marker-less strain measurement of tissue undergoing uniaxial loading. We validate the algorithm on a synthetic dataset composed of artificial deformation fields applied to a speckle image, as well as images of aortic sections of varying perceptual quality. Initial results indicate that Demons outperforms recent Optical Flow and Digital Image Correlation methods in terms of accuracy and robustness to low image quality, with similar runtimes. Demons achieves at least 8% lower maximal deviation from ground truth on 50% biaxial and shear strain applied to aortic images. To illustrate utility, we quantified strain fields of multiple human aortic specimens undergoing uniaxial tensile testing, noting the formation of strain concentrations in areas of rupture. The modified Demons algorithm captured a large range of strains (up to 50%) and provided spatially resolved strain fields that could be useful in the assessment of soft tissue pathologies.
在组织变形过程中进行应变测量对于阐明机械载荷与生物组织功能变化之间的关系至关重要。当与特定的加载条件结合使用时,应变场的评估可用于构建能够准确表示软组织力学行为的模型。应变场的不均匀性可能表明机械性能的正常或病理不均匀性。在这项研究中,我们验证了一种改进的 Demons 配准算法,用于对经历单轴加载的组织进行非接触、无标记的应变测量。我们在由人工变形场应用于散斑图像以及具有不同感知质量的主动脉切片图像组成的合成数据集上验证了该算法。初步结果表明,Demons 在准确性和对低图像质量的鲁棒性方面优于最近的光流和数字图像相关方法,同时具有相似的运行时间。Demons 在应用于主动脉图像的 50%双轴和剪切应变时,最大偏差比地面真实值至少低 8%。为了说明其实用性,我们量化了多个经历单轴拉伸测试的人类主动脉标本的应变场,注意到在破裂区域形成了应变集中。改进的 Demons 算法捕获了很大的应变范围(高达 50%),并提供了空间分辨率的应变场,这可能有助于评估软组织病变。