Müller David, Ehlen Andreas, Valeske Bernd
Fraunhofer Institute for Non-Destructive Testing IZFP, Campus E3 1, 66123 Saarbrücken, Germany.
Saarland University of Applied Sciences, htw saar, Goebenstr. 40, 66117 Saarbrücken, Germany.
J Nondestr Eval. 2021;40(1):9. doi: 10.1007/s10921-020-00740-y. Epub 2021 Jan 3.
Convolutional neural networks were used for multiclass segmentation in thermal infrared face analysis. The principle is based on existing image-to-image translation approaches, where each pixel in an image is assigned to a class label. We show that established networks architectures can be trained for the task of multiclass face analysis in thermal infrared. Created class annotations consisted of pixel-accurate locations of different face classes. Subsequently, the trained network can segment an acquired unknown infrared face image into the defined classes. Furthermore, face classification in live image acquisition is shown, in order to be able to display the relative temperature in real-time from the learned areas. This allows a pixel-accurate temperature face analysis e.g. for infection detection like Covid-19. At the same time our approach offers the advantage of concentrating on the relevant areas of the face. Areas of the face irrelevant for the relative temperature calculation or accessories such as glasses, masks and jewelry are not considered. A custom database was created to train the network. The results were quantitatively evaluated with the intersection over union (IoU) metric. The methodology shown can be transferred to similar problems for more quantitative thermography tasks like in materials characterization or quality control in production.
卷积神经网络被用于热红外面部分析中的多类分割。其原理基于现有的图像到图像的转换方法,即图像中的每个像素都被分配一个类别标签。我们表明,既定的网络架构可以针对热红外中的多类面部分析任务进行训练。创建的类别注释包括不同面部类别的像素精确位置。随后,经过训练的网络可以将获取的未知红外面部图像分割成定义的类别。此外,还展示了实时图像采集过程中的面部分类,以便能够从学习区域实时显示相对温度。这使得能够进行像素精确的温度面部分析,例如用于像新冠病毒-19这样的感染检测。同时,我们的方法具有专注于面部相关区域的优势。对于相对温度计算无关的面部区域或眼镜、口罩和珠宝等配饰不予以考虑。创建了一个自定义数据库来训练网络。结果使用交并比(IoU)指标进行定量评估。所展示的方法可以转移到类似问题上,用于更多定量热成像任务,如材料表征或生产中的质量控制。