Suppr超能文献

多模态脑肿瘤图像分割基准(BRATS)。

The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

作者信息

Menze Bjoern H, Jakab Andras, Bauer Stefan, Kalpathy-Cramer Jayashree, Farahani Keyvan, Kirby Justin, Burren Yuliya, Porz Nicole, Slotboom Johannes, Wiest Roland, Lanczi Levente, Gerstner Elizabeth, Weber Marc-André, Arbel Tal, Avants Brian B, Ayache Nicholas, Buendia Patricia, Collins D Louis, Cordier Nicolas, Corso Jason J, Criminisi Antonio, Das Tilak, Delingette Hervé, Demiralp Çağatay, Durst Christopher R, Dojat Michel, Doyle Senan, Festa Joana, Forbes Florence, Geremia Ezequiel, Glocker Ben, Golland Polina, Guo Xiaotao, Hamamci Andac, Iftekharuddin Khan M, Jena Raj, John Nigel M, Konukoglu Ender, Lashkari Danial, Mariz José Antonió, Meier Raphael, Pereira Sérgio, Precup Doina, Price Stephen J, Raviv Tammy Riklin, Reza Syed M S, Ryan Michael, Sarikaya Duygu, Schwartz Lawrence, Shin Hoo-Chang, Shotton Jamie, Silva Carlos A, Sousa Nuno, Subbanna Nagesh K, Szekely Gabor, Taylor Thomas J, Thomas Owen M, Tustison Nicholas J, Unal Gozde, Vasseur Flor, Wintermark Max, Ye Dong Hye, Zhao Liang, Zhao Binsheng, Zikic Darko, Prastawa Marcel, Reyes Mauricio, Van Leemput Koen

出版信息

IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.

Abstract

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

摘要

在本文中,我们报告了与2012年和2013年医学图像计算与计算机辅助干预国际会议(MICCAI)联合举办的多模态脑肿瘤图像分割基准测试(BRATS)的设置和结果。二十种最先进的肿瘤分割算法被应用于一组65例低级别和高级别胶质瘤患者的多对比度磁共振扫描图像(由多达四名评估人员进行手动标注)以及65例使用肿瘤图像模拟软件生成的可比扫描图像。定量评估显示,在分割各种肿瘤子区域时,人类评估人员之间存在相当大的分歧(Dice分数在74%-85%之间),这说明了这项任务的难度。我们发现,不同的算法在不同的子区域表现最佳(达到与人类评估人员之间的变异性相当的性能),但没有一种算法能在所有子区域同时排名靠前。使用分层多数投票融合几种优秀算法得到的分割结果始终高于所有单个算法,这表明在方法改进方面仍有机会。BRATS图像数据和手动标注通过在线评估系统继续公开提供,作为一个持续的基准测试资源。

相似文献

1
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).多模态脑肿瘤图像分割基准(BRATS)。
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
5
The Liver Tumor Segmentation Benchmark (LiTS).肝脏肿瘤分割基准(LiTS)。
Med Image Anal. 2023 Feb;84:102680. doi: 10.1016/j.media.2022.102680. Epub 2022 Nov 17.

引用本文的文献

8
FastSAM3D: An Efficient Segment Anything Model for 3D Volumetric Medical Images.FastSAM3D:一种用于3D体医学图像的高效图像分割模型。
Med Image Comput Comput Assist Interv. 2024 Oct;15012:542-552. doi: 10.1007/978-3-031-72390-2_51. Epub 2024 Oct 23.
9
Unraveling Normal Anatomy via Fluid-Driven Anomaly Randomization.通过流体驱动的异常随机化解析正常解剖结构。
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2025 Jun;2025:10455-10465. doi: 10.1109/cvpr52734.2025.00978. Epub 2025 Aug 13.

本文引用的文献

1
MONITORING SLOWLY EVOLVING TUMORS.监测缓慢进展的肿瘤。
Proc IEEE Int Symp Biomed Imaging. 2008 May;2008:812-815. doi: 10.1109/ISBI.2008.4541120. Epub 2008 Jun 13.
2
Spatio-temporal video segmentation with shape growth or shrinkage constraint.具有形状增长或收缩约束的时空视频分割。
IEEE Trans Image Process. 2014 Sep;23(9):3829-40. doi: 10.1109/TIP.2014.2336544. Epub 2014 Jul 8.
4
Multi-modal glioblastoma segmentation: man versus machine.多模态胶质母细胞瘤分割:人 versus 机器。
PLoS One. 2014 May 7;9(5):e96873. doi: 10.1371/journal.pone.0096873. eCollection 2014.
6
Multi-atlas segmentation without registration: a supervoxel-based approach.无需配准的多图谱分割:一种基于超体素的方法。
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):535-42. doi: 10.1007/978-3-642-40760-4_67.
8
Is synthesizing MRI contrast useful for inter-modality analysis?合成磁共振成像造影剂对多模态分析有用吗?
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):631-8. doi: 10.1007/978-3-642-40811-3_79.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验