Suppr超能文献

基于使用PET-CT最大密度投影(MIP)图像的目标检测进行生理摄取检测来开发用于检测恶性摄取的联合方法。

Development of Combination Methods for Detecting Malignant Uptakes Based on Physiological Uptake Detection Using Object Detection With PET-CT MIP Images.

作者信息

Kawakami Masashi, Hirata Kenji, Furuya Sho, Kobayashi Kentaro, Sugimori Hiroyuki, Magota Keiichi, Katoh Chietsugu

机构信息

Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Japan.

Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.

出版信息

Front Med (Lausanne). 2020 Dec 23;7:616746. doi: 10.3389/fmed.2020.616746. eCollection 2020.

Abstract

Deep learning technology is now used for medical imaging. YOLOv2 is an object detection model using deep learning. Here, we applied YOLOv2 to FDG-PET images to detect the physiological uptake on the images. We also investigated the detection precision of abnormal uptake by a combined technique with YOLOv2. Using 3,500 maximum intensity projection (MIP) images of 500 cases of whole-body FDG-PET examinations, we manually drew rectangular regions of interest with the size of each physiological uptake to create a dataset. Using YOLOv2, we performed image training as transfer learning by initial weight. We evaluated YOLOv2's physiological uptake detection by determining the intersection over union (IoU), average precision (AP), mean average precision (mAP), and frames per second (FPS). We also developed a combination method for detecting abnormal uptake by subtracting the YOLOv2-detected physiological uptake. We calculated the coverage rate, false-positive rate, and false-negative rate by comparing the combination method-generated color map with the abnormal findings identified by experienced radiologists. The APs for physiological uptakes were: brain, 0.993; liver, 0.913; and bladder, 0.879. The mAP was 0.831 for all classes with the IoU threshold value 0.5. Each subset's average FPS was 31.60 ± 4.66. The combination method's coverage rate, false-positive rate, and false-negative rate for detecting abnormal uptake were 0.9205 ± 0.0312, 0.3704 ± 0.0213, and 0.1000 ± 0.0774, respectively. The physiological uptake of FDG-PET on MIP images was quickly and precisely detected using YOLOv2. The combination method, which can be utilized the characteristics of the detector by YOLOv2, detected the radiologist-identified abnormalities with a high coverage rate. The detectability and fast response would thus be useful as a diagnostic tool.

摘要

深度学习技术目前已应用于医学成像。YOLOv2是一种使用深度学习的目标检测模型。在此,我们将YOLOv2应用于FDG-PET图像,以检测图像上的生理性摄取。我们还通过与YOLOv2的组合技术研究了异常摄取的检测精度。利用500例全身FDG-PET检查的3500张最大强度投影(MIP)图像,我们手动绘制了每个生理性摄取大小的矩形感兴趣区域,以创建一个数据集。使用YOLOv2,我们通过初始权重进行迁移学习来进行图像训练。我们通过确定交并比(IoU)、平均精度(AP)、平均平均精度(mAP)和每秒帧数(FPS)来评估YOLOv2的生理性摄取检测。我们还开发了一种通过减去YOLOv2检测到的生理性摄取来检测异常摄取的组合方法。通过将组合方法生成的彩色图与经验丰富的放射科医生识别的异常结果进行比较,我们计算了覆盖率、假阳性率和假阴性率。生理性摄取的AP值分别为:脑,0.993;肝脏,0.913;膀胱,0.879。IoU阈值为0.5时,所有类别的mAP为0.831。每个子集的平均FPS为31.60±4.66。检测异常摄取的组合方法的覆盖率、假阳性率和假阴性率分别为0.9205±0.0312、0.3704±0.0213和0.1000±0.0774。使用YOLOv2可以快速、准确地检测MIP图像上FDG-PET的生理性摄取。该组合方法可以利用YOLOv2检测器的特性,以高覆盖率检测放射科医生识别的异常。因此,这种可检测性和快速响应作为一种诊断工具将很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba3/7785870/2dc5993e8443/fmed-07-616746-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验