Cai Pamela C, Krajina Brad A, Kratochvil Michael J, Zou Lei, Zhu Audrey, Burgener Elizabeth B, Bollyky Paul L, Milla Carlos E, Webber Matthew J, Spakowitz Andrew J, Heilshorn Sarah C
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
Department of Materials Science, Stanford University, Stanford, CA 94305, USA.
Soft Matter. 2021 Feb 21;17(7):1929-1939. doi: 10.1039/d0sm01597k. Epub 2021 Jan 11.
We present a method for using dynamic light scattering in the single-scattering limit to measure the viscoelastic moduli of soft materials. This microrheology technique only requires a small sample volume of 12 μL to measure up to six decades in time of rheological behavior. We demonstrate the use of dynamic light scattering microrheology (DLSμR) on a variety of soft materials, including dilute polymer solutions, covalently-crosslinked polymer gels, and active, biological fluids. In this work, we detail the procedure for applying the technique to new materials and discuss the critical considerations for implementing the technique, including a custom analysis script for analyzing data output. We focus on the advantages of applying DLSμR to biologically relevant materials: breast cancer cells encapsulated in a collagen gel and cystic fibrosis sputum. DLSμR is an easy, efficient, and economical rheological technique that can guide the design of new polymeric materials and facilitate the understanding of the underlying physics governing behavior of naturally derived materials.
我们提出了一种在单次散射极限下使用动态光散射来测量软材料粘弹性模量的方法。这种微观流变学技术仅需12微升的小样本体积,就能测量长达六个数量级的流变行为时间。我们展示了动态光散射微观流变学(DLSμR)在多种软材料上的应用,包括稀聚合物溶液、共价交联聚合物凝胶以及活性生物流体。在这项工作中,我们详细介绍了将该技术应用于新材料的程序,并讨论了实施该技术的关键注意事项,包括用于分析数据输出的定制分析脚本。我们重点关注将DLSμR应用于生物相关材料的优势:封装在胶原蛋白凝胶中的乳腺癌细胞和囊性纤维化痰液。DLSμR是一种简便、高效且经济的流变学技术,可指导新型聚合物材料的设计,并有助于理解天然材料行为背后的物理原理。