Krajina Brad A, Tropini Carolina, Zhu Audrey, DiGiacomo Philip, Sonnenburg Justin L, Heilshorn Sarah C, Spakowitz Andrew J
Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States.
ACS Cent Sci. 2017 Dec 27;3(12):1294-1303. doi: 10.1021/acscentsci.7b00449. Epub 2017 Dec 15.
The development of experimental techniques capable of probing the viscoelasticity of soft materials over a broad range of time scales is essential to uncovering the physics that governs their behavior. In this work, we develop a microrheology technique that requires only 12 μL of sample and is capable of resolving dynamic behavior ranging in time scales from 10 to 10 s. Our approach, based on dynamic light scattering in the single-scattering limit, enables the study of polymer gels and other soft materials over a vastly larger hierarchy of time scales than macrorheology measurements. Our technique captures the viscoelastic modulus of polymer hydrogels with a broad range of stiffnesses from 10 to 10 Pa. We harness these capabilities to capture hierarchical molecular relaxations in DNA and to study the rheology of precious biological materials that are impractical for macrorheology measurements, including decellularized extracellular matrices and intestinal mucus. The use of a commercially available benchtop setup that is already available to a variety of soft matter researchers renders microrheology measurements accessible to a broader range of users than existing techniques, with the potential to reveal the physics that underlies complex polymer hydrogels and biological materials.
开发能够在广泛的时间尺度上探测软材料粘弹性的实验技术,对于揭示支配其行为的物理机制至关重要。在这项工作中,我们开发了一种微流变技术,该技术仅需12微升样品,就能解析时间尺度从10到10秒的动态行为。我们基于单散射极限下的动态光散射的方法,能够研究聚合物凝胶和其他软材料,其时间尺度范围比宏观流变学测量大得多。我们的技术能够测量刚度范围从10到10帕的聚合物水凝胶的粘弹性模量。我们利用这些能力来捕捉DNA中的分级分子弛豫,并研究对于宏观流变学测量不切实际的珍贵生物材料的流变学,包括脱细胞细胞外基质和肠黏液。使用各种软物质研究人员都已有的商用台式设备,使得微流变测量比现有技术更易于广大用户使用,有可能揭示复杂聚合物水凝胶和生物材料背后的物理机制。