Li Ningbo, Yang Da-Jie, Shao Yang, Liu Yunting, Tang Jiebin, Yang Liping, Sun Tianyu, Zhou Weijia, Liu Hong, Xue Guobin
Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Ji'nan 250022, P. R. China.
School of Materials Science and Engineering, University of Jinan, Ji'nan 250022, P. R. China.
ACS Appl Mater Interfaces. 2021 Jan 27;13(3):4305-4315. doi: 10.1021/acsami.0c17584. Epub 2021 Jan 11.
Utilizing the abundant and renewable solar energy to address the global energy shortage and water scarcity is promising. Great effort has been devoted to photothermal conversion for its typically full-spectrum utilization and high efficiency. Here, the coral-like micro/nanostructure was fabricated on an aluminum sheet by a facile laser direct writing technology. The nanocluster and microscale branches of corals endowed this black aluminum with broad-band plasmonic absorption and rapid heat transfer from the light absorption region to substrate. The black aluminum achieved ultrahigh solar absorbance of over 92.6% (>95.1% in the visible range) and excellent light heating ability (>90.6 °C under 1.0 sun). With good photothermal properties, this plasmonic absorber was used in a state-of-the-art eight-layer membrane distillation system, producing a water yield of up to 2.40 kg m h and a high solar conversion efficiency of 166.5% under 1-sun irradiation. Photothermal electricity was also achieved based on this system with a thermoelectric generator, with a water yield of 0.89 kg m h and a maximum electrical power output of 7.21 μW cm under 1.0 sun. Considering the excellent performance of the plasmon-enhanced black aluminum, this work provides an alternative and feasible route toward high-efficient utilization of the solar energy.
利用丰富且可再生的太阳能来解决全球能源短缺和水资源匮乏问题具有广阔前景。由于其典型的全光谱利用和高效率,人们在光热转换方面付出了巨大努力。在此,通过一种简便的激光直写技术在铝板上制备了珊瑚状微/纳米结构。珊瑚的纳米团簇和微米级分支赋予了这种黑色铝板宽带等离子体吸收特性以及从光吸收区域到基底的快速热传递能力。该黑色铝板实现了超过92.6%的超高太阳能吸收率(在可见光范围内>95.1%)以及出色的光加热能力(在1.0个太阳光照下>90.6°C)。凭借良好的光热性能,这种等离子体吸收器被应用于最先进的八层膜蒸馏系统中,在1个太阳光照下产水量高达2.40 kg m h,太阳能转换效率高达166.5%。基于该系统还利用热电发电机实现了光热电转换,在1.0个太阳光照下产水量为0.89 kg m h,最大电功率输出为7.21 μW cm。鉴于等离子体增强黑色铝板的优异性能,这项工作为太阳能的高效利用提供了一条替代且可行的途径。