Pharmerit - an OPEN Health Company, Marten Meesweg 107, 3068 AV, Rotterdam, The Netherlands.
Pharmerit - an OPEN Health Company, Oxford, UK.
Pharmacoeconomics. 2021 Mar;39(3):345-356. doi: 10.1007/s40273-020-00989-1. Epub 2021 Jan 11.
The immuno-oncologic (IO) mechanism of action may lead to an overall survival (OS) hazard that changes over time, producing shapes that standard parametric extrapolation methods may struggle to reflect. Furthermore, selection of the most appropriate extrapolation method for health technology assessment is often based on trial data with limited follow-up.
To examine this problem, we fitted a range of extrapolation methods to patient-level survival data from CheckMate 025 (NCT01668784, CM-025), a phase III trial comparing nivolumab with everolimus for previously treated advanced renal cell carcinoma (aRCC), to assess their predictive accuracy over time.
Six extrapolation methods were examined: standard parametric models, natural cubic splines, piecewise models combining Kaplan-Meier data with an exponential or non-exponential distribution, response-based landmark models, and parametric mixture models. We produced three database locks (DBLs) at minimum follow-ups of 15, 27, and 39 months to align with previously published CM-025 data. A three-step evaluation process was adopted: (1) selection of the distribution family for each method in each of the three DBLs, (2) internal validation comparing extrapolation-based landmark and mean survival with the latest CM-025 dataset (minimum follow-up, 64 months), and (3) external validation of survival projections using clinical expert opinion and long-term follow-up data from other nivolumab studies in aRCC (CheckMate 003 and CheckMate 010).
All extrapolation methods, with the exception of mixture models, underestimated landmark and mean OS for nivolumab compared with CM-025 long-term follow-up data. OS estimates for everolimus tended to be more accurate, with four of the six methods providing landmark OS estimates within the 95% confidence interval of observed OS as per the latest dataset. The predictive accuracy of survival extrapolation methods fitted to nivolumab also showed greater variation than for everolimus. The proportional hazards assumption held for all DBLs, and a dependent log-logistic model provided reliable estimates of longer-term survival for both nivolumab and everolimus across the DBLs. Although mixture models and response-based landmark models provided reasonable estimates of OS based on the 39-month DBL, this was not the case for the two earlier DBLs. The piecewise exponential models consistently underestimated OS for both nivolumab and everolimus at clinically meaningful pre-specified landmark time points.
This aRCC case study identified marked differences in the predictive accuracy of survival extrapolation methods for nivolumab but less so for everolimus. The dependent log-logistic model did not suffer from overfitting to early DBLs to the same extent as more complex methods. Methods that provide more degrees of freedom may accurately represent survival for IO therapy, particularly if data are more mature or external data are available to inform the long-term extrapolations.
免疫肿瘤学(IO)的作用机制可能导致整体生存(OS)风险随时间变化,产生标准参数外推方法可能难以反映的形状。此外,用于卫生技术评估的最合适外推方法的选择通常基于随访时间有限的试验数据。
为了研究这个问题,我们对来自 CheckMate 025(NCT01668784,CM-025)的患者水平生存数据拟合了一系列外推方法,该试验比较了纳武单抗与依维莫司治疗先前治疗的晚期肾细胞癌(aRCC),以评估它们随时间的预测准确性。
检查了六种外推方法:标准参数模型、自然三次样条、将 Kaplan-Meier 数据与指数或非指数分布相结合的分段模型、基于反应的标志模型和参数混合模型。我们在最小随访时间为 15、27 和 39 个月时制作了三个数据库锁定(DBL),以与之前发表的 CM-025 数据保持一致。采用三步评估过程:(1)在三个 DBL 中的每个方法中选择分布族;(2)内部验证比较基于标志和平均生存的外推与最新的 CM-025 数据集(最小随访时间,64 个月);(3)使用临床专家意见和其他 nivolumab 在 aRCC 中的研究的长期随访数据(CheckMate 003 和 CheckMate 010)对生存预测进行外部验证。
除混合模型外,所有外推方法均低估了 nivolumab 的标志和平均 OS 与 CM-025 长期随访数据相比。everolimus 的 OS 估计往往更准确,其中六种方法中的四种提供了标志 OS 估计值,与最新数据集的观察到的 OS 在 95%置信区间内。nivolumab 生存外推方法的预测准确性也比 everolimus 变化更大。所有 DBL 均满足比例风险假设,并且依赖对数逻辑模型为 DBL 中 nivolumab 和 everolimus 的长期生存提供了可靠的估计。尽管混合模型和基于反应的标志模型基于 39 个月的 DBL 提供了 OS 的合理估计,但对于前两个 DBL 则不然。在临床上有意义的预先指定标志时间点,分段指数模型始终低估了 nivolumab 和 everolimus 的 OS。
这项 aRCC 案例研究确定了 nivolumab 生存外推方法的预测准确性存在明显差异,但 everolimus 的差异较小。依赖对数逻辑模型不会像更复杂的方法那样过度拟合早期 DBL。提供更多自由度的方法可能更准确地代表 IO 治疗的生存,特别是如果数据更成熟或有外部数据可用于告知长期外推。