Delta Hat Limited, Bramley House, Bramley Road, Nottingham, NG10 3SX, UK.
University of Sheffield, Sheffield, UK.
Pharmacoeconomics. 2024 Dec;42(12):1395-1412. doi: 10.1007/s40273-024-01429-0. Epub 2024 Sep 20.
Accurately extrapolating survival beyond trial follow-up is essential in a health technology assessment where model choice often substantially impacts estimates of clinical and cost effectiveness. Evidence suggests standard parametric models often provide poor fits to long-term data from immuno-oncology trials. Palmer et al. developed an algorithm to aid the selection of more flexible survival models for these interventions. We assess the usability of the algorithm, identify areas for improvement and evaluate whether it effectively identifies models capable of accurate extrapolation.
We applied the Palmer algorithm to the CheckMate-649 trial, which investigated nivolumab plus chemotherapy versus chemotherapy alone in patients with gastroesophageal adenocarcinoma. We evaluated the algorithm's performance by comparing survival estimates from identified models using the 12-month data cut to survival observed in the 48-month data cut.
The Palmer algorithm offers a systematic procedure for model selection, encouraging detailed analyses and ensuring that crucial stages in the selection process are not overlooked. In our study, a range of models were identified as potentially appropriate for extrapolating survival, but only flexible parametric non-mixture cure models provided extrapolations that were plausible and accurately predicted subsequently observed survival. The algorithm could be improved with minor additions around the specification of hazard plots and setting out plausibility criteria.
The Palmer algorithm provides a systematic framework for identifying suitable survival models, and for defining plausibility criteria for extrapolation validity. Using the algorithm ensures that model selection is based on explicit justification and evidence, which could reduce discordance in health technology appraisals.
在健康技术评估中,准确推断试验随访期外的生存情况至关重要,而模型选择通常会极大地影响临床和成本效益的估计。有证据表明,标准参数模型通常对免疫肿瘤学试验的长期数据拟合不佳。Palmer 等人开发了一种算法,以帮助选择更灵活的生存模型来进行这些干预。我们评估了该算法的可用性,确定了改进的领域,并评估了它是否能有效地识别能够进行准确推断的模型。
我们将 Palmer 算法应用于 CheckMate-649 试验,该试验研究了纳武利尤单抗联合化疗与单独化疗在胃食管腺癌患者中的疗效。我们通过比较从已识别模型中获得的生存估计值,评估了算法的性能,这些估计值是使用 12 个月数据截止点与 48 个月数据截止点观察到的生存情况进行比较的。
Palmer 算法为模型选择提供了一个系统的程序,鼓励进行详细的分析,并确保在选择过程中不会忽略关键阶段。在我们的研究中,确定了一系列可能适合推断生存的模型,但只有灵活的参数非混合治愈模型提供的推断才是合理的,并且准确地预测了随后观察到的生存情况。算法可以通过在危险图的说明和提出合理性标准方面进行微小的添加来进行改进。
Palmer 算法为识别合适的生存模型提供了一个系统的框架,并为推断有效性的合理性标准提供了定义。使用该算法可确保模型选择基于明确的理由和证据,这可能会减少健康技术评估中的不一致性。