Laboratory of Systems Tumor Immunology, Comprehensive Cancer Center Erlangen and Deutsches Zentrum Immuntherapie (DZI), Department of Dermatology, FAU Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054 Erlangen, Germany.
Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 4, 1113 Sofia, Bulgaria.
Int J Mol Sci. 2021 Jan 7;22(2):547. doi: 10.3390/ijms22020547.
In most disciplines of natural sciences and engineering, mathematical and computational modelling are mainstay methods which are usefulness beyond doubt. These disciplines would not have reached today's level of sophistication without an intensive use of mathematical and computational models together with quantitative data. This approach has not been followed in much of molecular biology and biomedicine, however, where qualitative descriptions are accepted as a satisfactory replacement for mathematical rigor and the use of computational models is seen by many as a fringe practice rather than as a powerful scientific method. This position disregards mathematical thinking as having contributed key discoveries in biology for more than a century, e.g., in the connection between genes, inheritance, and evolution or in the mechanisms of enzymatic catalysis. Here, we discuss the role of computational modelling in the arsenal of modern scientific methods in biomedicine. We list frequent misconceptions about mathematical modelling found among biomedical experimentalists and suggest some good practices that can help bridge the cognitive gap between modelers and experimental researchers in biomedicine. This manuscript was written with two readers in mind. Firstly, it is intended for mathematical modelers with a background in physics, mathematics, or engineering who want to jump into biomedicine. We provide them with ideas to motivate the use of mathematical modelling when discussing with experimental partners. Secondly, this is a text for biomedical researchers intrigued with utilizing mathematical modelling to investigate the pathophysiology of human diseases to improve their diagnostics and treatment.
在自然科学和工程学的大多数领域,数学和计算建模是不可或缺的方法,其用途毋庸置疑。如果没有对数学和计算模型以及定量数据的大量使用,这些学科就不会达到今天的复杂程度。然而,这种方法并没有在分子生物学和生物医学的许多领域得到应用,在这些领域,定性描述被认为是对数学严谨性的满意替代,而许多人认为使用计算模型只是一种边缘实践,而不是一种强大的科学方法。这种观点忽视了数学思维在生物学中一个多世纪以来的关键发现所起的作用,例如,在基因、遗传和进化之间的联系,或者在酶催化机制中。在这里,我们讨论了计算建模在生物医学现代科学方法中的作用。我们列出了生物医学实验人员中常见的关于数学建模的误解,并提出了一些好的实践方法,可以帮助弥合生物医学模型构建者和实验研究人员之间的认知差距。这篇手稿是为两类读者写的。首先,它面向的是具有物理、数学或工程背景的数学建模者,他们希望涉足生物医学领域。我们为他们提供了一些想法,以便在与实验伙伴讨论时激发他们使用数学建模。其次,这是一本针对对利用数学建模来研究人类疾病的病理生理学以改善诊断和治疗感兴趣的生物医学研究人员的书。