Kaiser Permanente Northern California, Division of Reseach, 2000 Broadway, Oakland, CA, US.
Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, US.
BMC Med Res Methodol. 2021 Jan 11;21(1):18. doi: 10.1186/s12874-020-01203-8.
Semi-competing risks arise when interest lies in the time-to-event for some non-terminal event, the observation of which is subject to some terminal event. One approach to assessing the impact of covariates on semi-competing risks data is through the illness-death model with shared frailty, where hazard regression models are used to model the effect of covariates on the endpoints. The shared frailty term, which can be viewed as an individual-specific random effect, acknowledges dependence between the events that is not accounted for by covariates. Although methods exist for fitting such a model to right-censored semi-competing risks data, there is currently a gap in the literature for fitting such models when a flexible baseline hazard specification is desired and the data are left-truncated, for example when time is on the age scale. We provide a modeling framework and openly available code for implementation.
We specified the model and the likelihood function that accounts for left-truncated data, and provided an approach to estimation and inference via maximum likelihood. Our model was fully parametric, specifying baseline hazards via Weibull or B-splines. Using simulated data we examined the operating characteristics of the implementation in terms of bias and coverage. We applied our methods to a dataset of 33,117 Kaiser Permanente Northern California members aged 65 or older examining the relationship between educational level (categorized as: high school or less; trade school, some college or college graduate; post-graduate) and incident dementia and death.
A simulation study showed that our implementation provided regression parameter estimates with negligible bias and good coverage. In our data application, we found higher levels of education are associated with a lower risk of incident dementia, after adjusting for sex and race/ethnicity.
As illustrated by our analysis of Kaiser data, our proposed modeling framework allows the analyst to assess the impact of covariates on semi-competing risks data, such as incident dementia and death, while accounting for dependence between the outcomes when data are left-truncated, as is common in studies of aging and dementia.
当研究兴趣在于某些非终末事件的时事件时,就会出现半竞争风险,而这些事件的观察受到某些终末事件的影响。评估协变量对半竞争风险数据的影响的一种方法是通过具有共享脆弱性的疾病死亡模型,其中使用风险回归模型来对协变量对终点的影响进行建模。共享脆弱性项可以看作是个体特定的随机效应,它承认了协变量无法解释的事件之间的依赖性。虽然存在适用于右删失半竞争风险数据的拟合此类模型的方法,但在需要灵活的基线风险规范并且数据存在左截断的情况下,例如当时间在年龄尺度上时,文献中存在拟合此类模型的空白。我们提供了一个建模框架和公开的实现代码。
我们指定了模型和考虑到左截断数据的似然函数,并提供了通过最大似然进行估计和推断的方法。我们的模型是完全参数化的,通过 Weibull 或 B 样条来指定基线风险。使用模拟数据,我们根据偏差和覆盖范围检查了实现的操作特性。我们将我们的方法应用于一组 33117 名 Kaiser Permanente 北加利福尼亚州年龄在 65 岁或以上的成员的数据集,研究教育水平(分为:高中或以下;职业学校、一些大学或大学毕业;研究生)与痴呆症和死亡的关系。
一项模拟研究表明,我们的实现提供了回归参数估计值,其偏差可忽略不计且覆盖范围良好。在我们的数据应用中,我们发现在调整性别和种族/民族后,较高的教育水平与较低的痴呆症发病风险相关。
正如我们对 Kaiser 数据的分析所示,我们提出的建模框架允许分析人员评估协变量对半竞争风险数据的影响,例如痴呆症和死亡,同时在数据存在左截断时,考虑到结果之间的依赖性,这在衰老和痴呆症研究中很常见。