Suppr超能文献

基于参数优化变分模态分解和具有新灵敏度评估阈值的包络谱加权峭度指数的轴承早期故障诊断

Incipient fault diagnosis of bearings based on parameter-optimized VMD and envelope spectrum weighted kurtosis index with a new sensitivity assessment threshold.

作者信息

Dibaj Ali, Hassannejad Reza, Ettefagh Mir Mohammad, Ehghaghi Mir Biuok

机构信息

Faculty of Mechanical Engineering, University of Tabriz, Tabriz, 51666-16471, Iran.

出版信息

ISA Trans. 2021 Aug;114:413-433. doi: 10.1016/j.isatra.2020.12.041. Epub 2020 Dec 28.

Abstract

Due to difficulties in identifying localized and incipient bearing faults, most proposed fault diagnosis methods focus on detecting these faults. However, it is not clear to what extent of fault severity the proposed methods are capable of detecting. In other words, the crucial issue remains in the literature as to what is the criteria for defining an incipient defect for the proposed methods. This study attempts to address this challenge concerning a decomposed-based fault diagnosis method and provide a suitable measure for assessing this method. In this regard, a parameter-optimized VMD approach is used to decompose vibration signals. Proposed optimization algorithm is able to optimize VMD parameters so that the decomposed modes have the minimum bandwidth and noise interference. A new fault-sensitive index called the envelope spectrum weighted kurtosis index (WKI) is then implemented to detect the mode with the most fault information. This index has the highest sensitivity to fault symptoms and detects the most similarity between the original signal and decomposed modes. For introduced index, a related criterion called the sensitivity threshold (Sth) is given. Based on this criterion, the maximum effectiveness of the proposed method or the minimum observable fault severity can be addressed For validation, the proposed parameter-optimized VMD and the established index are challenged by the investigation of simulated vibration signals of a defective bearing at different fault severity and two experimental datasets and comparison with available methods in the literature.

摘要

由于难以识别局部和初期的轴承故障,大多数提出的故障诊断方法都侧重于检测这些故障。然而,尚不清楚所提出的方法能够检测到何种程度的故障严重程度。换句话说,关于所提出的方法定义初期缺陷的标准是什么这一关键问题在文献中仍然存在。本研究试图解决关于基于分解的故障诊断方法的这一挑战,并为评估该方法提供一种合适的度量。在这方面,采用参数优化的变分模态分解(VMD)方法对振动信号进行分解。所提出的优化算法能够优化VMD参数,以使分解后的模态具有最小带宽和噪声干扰。然后实施一种新的故障敏感指标,称为包络谱加权峭度指标(WKI),以检测具有最多故障信息的模态。该指标对故障症状具有最高灵敏度,并能检测出原始信号与分解模态之间的最大相似性。对于引入的指标,给出了一个相关的准则,称为灵敏度阈值(Sth)。基于该准则,可以确定所提出方法的最大有效性或最小可观测故障严重程度。为了进行验证,通过对不同故障严重程度下有缺陷轴承的模拟振动信号以及两个实验数据集进行研究,并与文献中的现有方法进行比较,对所提出的参数优化VMD和已建立的指标进行了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验