Suppr超能文献

基于 AVMD-DBN-ELM 的轴承故障诊断模型。

An AVMD-DBN-ELM Model for Bearing Fault Diagnosis.

机构信息

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

出版信息

Sensors (Basel). 2022 Dec 1;22(23):9369. doi: 10.3390/s22239369.

Abstract

Rotating machinery often works under complex and variable working conditions; the vibration signals that are widely used for the health monitoring of rotating machinery show extremely complicated dynamic frequency characteristics. It is unlikely that a few certain frequency components are used as the representative fault signatures for all working conditions. Aiming at a general solution, this paper proposes an intelligent bearing fault diagnosis method that integrates adaptive variational mode decomposition (AVMD), mode sorting based deep belief network (DBN) and extreme learning machine (ELM). It can adaptively decompose non-stationery vibration signals into temporary frequency components and sort out a set of effective frequency components for online fault diagnosis. For online implementation, a similarity matching method is proposed, which can match the online-obtained frequency-domain fault signatures with the historical fault signatures, and the parameters of AVMD-DBN-ELM model are set to be the same as the most similar case. The proposed method can decompose vibration signals into different modes adaptively and retain effective modes, and it can learn from the idea of an attention mechanism and fuse the results according to the weight of MIV. It also can improve the timeliness of the fault diagnosis. For comprehensive verification of the proposed method, the bearing dataset from the University of Ottawa is used, and some recent methods are repeated for comparative analysis. The results can prove that our proposed method has higher reliability, higher accuracy and higher efficiency.

摘要

旋转机械通常在复杂和多变的工作条件下工作;广泛用于旋转机械健康监测的振动信号显示出极其复杂的动态频率特性。在所有工作条件下,使用少数特定频率分量作为代表性故障特征是不太可能的。针对这一普遍问题,本文提出了一种集成自适应变分模态分解(AVMD)、基于模式排序的深度置信网络(DBN)和极限学习机(ELM)的智能轴承故障诊断方法。它可以自适应地将非平稳振动信号分解为临时频率分量,并整理出一组有效的频率分量用于在线故障诊断。为了实现在线实施,提出了一种相似性匹配方法,该方法可以将在线获取的频域故障特征与历史故障特征进行匹配,并将 AVMD-DBN-ELM 模型的参数设置为与最相似的情况相同。所提出的方法可以自适应地将振动信号分解为不同的模式,并保留有效的模式,它可以从注意力机制的思想中学习,并根据 MIV 的权重融合结果。它还可以提高故障诊断的及时性。为了全面验证所提出的方法,使用了渥太华大学的轴承数据集,并对一些最新的方法进行了重复比较分析。结果可以证明,我们提出的方法具有更高的可靠性、更高的准确性和更高的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a628/9740509/7ec1c9858913/sensors-22-09369-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验