Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA.
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA.
Sci Rep. 2021 Jan 11;11(1):324. doi: 10.1038/s41598-020-79602-6.
The structural and mechanical properties of tissue and the interplay between them play a critical role in tissue function. We introduce the optomechanogram, a combined quantitative and qualitative visualization of spatially co-registered measurements of the microstructural and micromechanical properties of any tissue. Our approach relies on the co-registration of two independent platforms, second-harmonic generation (SHG) microscopy for quantitative assessment of 3D collagen-fiber microstructural organization, and nanoindentation (NI) for local micromechanical properties. We experimentally validate our method by applying to uterine cervix tissue, which exhibits structural and mechanical complexity. We find statistically significant agreement between the micromechanical and microstructural data, and confirm that the distinct tissue regions are distinguishable using either the SHG or NI measurements. Our method could potentially be used for research in pregnancy maintenance, mechanobiological studies of tissues and their constitutive modeling and more generally for the optomechanical metrology of materials.
组织的结构和力学性能及其相互作用在组织功能中起着关键作用。我们引入了光机械图,这是一种对任何组织的微观结构和微力学性能进行空间共定位测量的定量和定性可视化方法。我们的方法依赖于两个独立平台的共定位,二次谐波产生(SHG)显微镜用于定量评估 3D 胶原纤维微观结构组织,纳米压痕(NI)用于局部微力学性能。我们通过对子宫颈组织进行实验验证来验证我们的方法,子宫颈组织表现出结构和力学复杂性。我们发现微力学和微观结构数据之间存在统计学上的显著一致性,并确认可以使用 SHG 或 NI 测量来区分不同的组织区域。我们的方法可能可用于妊娠维持研究、组织的机械生物学研究及其本构建模,以及更普遍的材料光机械计量学。